
MVME5100
Single Board Computer

Programmer’s
Reference Guide

V5100A/PG1

November 2000 Edition

© Copyright 2000 Motorola, Inc.

All rights reserved.

Printed in the United States of America.

Motorola and the Motorola logo are registered trademarks and AltiVec is a trademark of
Motorola, Inc.

PowerPC and the PowerPC logo are registered trademarks; and PowerPC 750 is a
trademark of International Business Machines Corporation and are used by Motorola, Inc.
under license from International Business Machines Corporation.

All other products mentioned in this document are trademarks or registered trademarks of
their respective holders.

Safety Summary
The following general safety precautions must be observed during all phases of operation, service, and repair of this
equipment. Failure to comply with these precautions or with specific warnings elsewhere in this manual could result
in personal injury or damage to the equipment.

The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You, as the
user of the product, should follow these warnings and all other safety precautions necessary for the safe operation of
the equipment in your operating environment.

Ground the Instrument.
To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground. If the
equipment is supplied with a three-conductor AC power cable, the power cable must be plugged into an approved
three-contact electrical outlet, with the grounding wire (green/yellow) reliably connected to an electrical ground
(safety ground) at the power outlet. The power jack and mating plug of the power cable meet International
Electrotechnical Commission (IEC) safety standards and local electrical regulatory codes.

Do Not Operate in an Explosive Atmosphere.
Do not operate the equipment in any explosive atmosphere such as in the presence of flammable gases or fumes.
Operation of any electrical equipment in such an environment could result in an explosion and cause injury or damage.

Keep Away From Live Circuits Inside the Equipment.
Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or other
qualified service personnel may remove equipment covers for internal subassembly or component replacement or any
internal adjustment. Service personnel should not replace components with power cable connected. Under certain
conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, such personnel
should always disconnect power and discharge circuits before touching components.

Use Caution When Exposing or Handling a CRT.
Breakage of a Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion). To prevent
CRT implosion, do not handle the CRT and avoid rough handling or jarring of the equipment. Handling of a CRT
should be done only by qualified service personnel using approved safety mask and gloves.

Do Not Substitute Parts or Modify Equipment.
Do not install substitute parts or perform any unauthorized modification of the equipment. Contact your local
Motorola representative for service and repair to ensure that all safety features are maintained.

Observe Warnings in Manual.
Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions
contained in the warnings must be followed. You should also employ all other safety precautions which you deem
necessary for the operation of the equipment in your operating environment.

Warning

To prevent serious injury or death from dangerous voltages, use extreme
caution when handling, testing, and adjusting this equipment and its
components.

Flammability

All Motorola PWBs (printed wiring boards) are manufactured with a flammability rating
of 94V-0 by UL-recognized manufacturers.

EMI Caution

!
Caution

This equipment generates, uses and can radiate electromagnetic energy. It
may cause or be susceptible to electromagnetic interference (EMI) if not
installed and used with adequate EMI protection.

Lithium Battery Caution

This product contains a lithium battery to power the clock and calendar circuitry.

!
Caution

Danger of explosion if battery is replaced incorrectly. Replace battery only
with the same or equivalent type recommended by the equipment
manufacturer. Dispose of used batteries according to the manufacturer’s
instructions.

Attention
!

Il y a danger d’explosion s’il y a remplacement incorrect de la batterie.
Remplacer uniquement avec une batterie du même type ou d’un type
équivalent recommandé par le constructeur. Mettre au rebut les batteries
usagées conformément aux instructions du fabricant.

Vorsicht
!

Explosionsgefahr bei unsachgemäßem Austausch der Batterie. Ersatz nur
durch denselben oder einen vom Hersteller empfohlenen Typ. Entsorgung
gebrauchter Batterien nach Angaben des Herstellers.

CE Notice (European Community)

Motorola Computer Group products with the CE marking comply with the EMC Directive
(89/336/EEC). Compliance with this directive implies conformity to the following
European Norms:

EN55022 “Limits and Methods of Measurement of Radio Interference Characteristics
of Information Technology Equipment”; this product tested to Equipment Class B

EN50082-1:1997 “Electromagnetic Compatibility—Generic Immunity Standard,
Part 1. Residential, Commercial and Light Industry”

System products also fulfill EN60950 (product safety) which is essentially the requirement
for the Low Voltage Directive (73/23/EEC).

Board products are tested in a representative system to show compliance with the above
mentioned requirements. A proper installation in a CE-marked system will maintain the
required EMC/safety performance.

In accordance with European Community directives, a “Declaration of Conformity” has
been made and is on file within the European Union. The “Declaration of Conformity” is
available on request. Please contact your sales representative.

Notice

While reasonable efforts have been made to assure the accuracy of this document,
Motorola, Inc. assumes no liability resulting from any omissions in this document, or from
the use of the information obtained therein. Motorola reserves the right to revise this
document and to make changes from time to time in the content hereof without obligation
of Motorola to notify any person of such revision or changes.

Electronic versions of this material may be read online, downloaded for personal use, or
referenced in another document as a URL to the Motorola Computer Group website. The
text itself may not be published commercially in print or electronic form, edited, translated,
or otherwise altered without the permission of Motorola, Inc.

It is possible that this publication may contain reference to or information about Motorola
products (machines and programs), programming, or services that are not available in your
country. Such references or information must not be construed to mean that Motorola
intends to announce such Motorola products, programming, or services in your country.

Limited and Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S.
Government, the following notice shall apply unless otherwise agreed to in writing by
Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (b)(3) of the Rights in Technical Data clause at DFARS 252.227-7013
(Nov. 1995) and of the Rights in Noncommercial Computer Software and Documentation
clause at DFARS 252.227-7014 (Jun. 1995).

Motorola, Inc.
Computer Group
2900 South Diablo Way
Tempe, Arizona 85282

Preface

The MVME5100 Single Board Computer Programmer’s Reference Guide provides the
information you will need to program your MVME5100 Single Board Computer.

The MVME5100 is a high-performance VME single board computer featuring the
Motorola Computer Group (MCG) PowerPlus II architecture with a choice of PowerPC®
processors—either Motorola’s MPC7400 with AltiVec™ technology for algorithmic
intensive computations or the low-power MPC750.

As of the printing date of this manual, the MVME5100 is available in the configurations
shown below. All models of the MVME5100 are available with either VME SCANBE
front panel (-01x1) or IEEE 1101 compatible front panel (-01x3).

Model Processor Memory Handles

MVME5100-0131 MCP750
@450 MHz

64MB SDRAM SCANBE

MVME5100-0161 512MB SDRAM

MVME5100-0133 64MB SDRAM IEEE 1101

MVME5100-0163 512MB SDRAM

MVME5101-0131 MCP7400
@400 MHz

64MB SDRAM SCANBE

MVME5101-0161 512MB SDRAM

MVME5101-0133 64MB SDRAM IEEE 1101

MVME5101-0163 512MB SDRAM

Comments and Suggestions

Motorola welcomes and appreciates your comments on its documentation. We want to know
what you think about our manuals and how we can improve them. Mail comments to:

Motorola Computer Group
Reader Comments DW164
2900 S. Diablo Way
Tempe, Arizona 85282

You can also submit comments to the following e-mail address:
reader-comments@mcg.mot.com

In all your correspondence, please provide the name of your company, followed by your
name and position. Please be sure to include the title and part number of the manual along
with a brief explanation on how you used it. Thereafter, summarize your feelings about its
strengths and weaknesses and provide us with any recommendations for improvements.

Conventions Used in This Manual

The following typographical conventions are used in this document:

bold

is used for user input that you type just as it appears; it is also used for commands,
options and arguments to commands, and names of programs, directories and files.

italic

is used for names of variables to which you assign values. Italic is also used for
comments in screen displays and examples, and to introduce new terms.

courier

is used for system output (for example, screen displays, reports), examples, and system
prompts.

<Enter>, <Return> or <CR>

represents the carriage return or Enter key.

Ctrl

represents the Control key. Execute control characters by pressing the Ctrl key and the
letter simultaneously, for example, Ctrl-d.

mailto:reader-comments@mcg.mot.com

Terminology

A character precedes a data or address parameter to specify the numeric format, as follows
(if not specified, the format is hexadecimal):

An asterisk (#) following a signal name for signals that are level significant denotes that the
signal is true or valid when the signal is low.

An asterisk (#) following a signal name for signals that are edge significant denotes that
the#actions initiated by that signal occur on high to low transition.

In this manual, assertion and negation are used to specify forcing a signal to a particular
state. In particular, assertion and assert refer to a signal that is active or true; negation and
negate indicate a signal that is inactive or false. These terms are used independently of the
voltage level (high or low) that they represent.

Data and address sizes are defined as follows:

0x Specifies a hexadecimal number

% Specifies a binary number

& Specifies a decimal number

Byte 8 bits, numbered 0 through 7, with bit 0 being the least significant.

Half word 16 bits, numbered 0 through 15, with bit 0 being the least significant.

Word 32 bits, numbered 0 through 31, with bit 0 being the least significant.

Double word 64 bits, numbered 0 through 63, with bit 0 being the least significant.

xi

Contents

CHAPTER 1 Product Data and Memory Maps

Introduction..1-1
What this Guide Provides ...1-1

Memory maps ..1-4
Processor Memory Map..1-4
PCI / VME Memory Map ...1-4

System Bus...1-4
Processors ...1-4
Processor Type Identification ...1-4
Processor PLL Configuration ...1-5
L2 Cache ...1-5
L2 Cache SRAM Size...1-5
Cache Speed..1-5
Flash Memory ...1-5
System Memory..1-6
Serial Presence Detect (SPD) Definitions ..1-6

Hawk ASIC..1-6
Hawk I2C interface and configuration information..1-6
Vital Product Data and Serial Presence Detect Data ..1-7
PCI Local Bus...1-7
The Ethernet Controller ..1-8
PMC/PCI Expansion Slots..1-8
The Universe ASIC...1-8
PCI Configuration Space ..1-8
PCI Arbitration Assignments for Hawk ASIC ...1-10
Hawk External Register Bus Address Assignments ...1-11

MVME5100 Hawk External Register Bus Summary................................1-11
Status Register ..1-13
MODFAIL Bit Register ..1-14
MODRST Bit Register..1-15
TBEN Bit Register..1-16
NVRAM/RTC & Watchdog Timer ...1-16
Software Readable Header Register ...1-16
Geographical Address Register (VME board)..1-17
Extended Features Register 1 ...1-17
Extended Features Register 2 ...1-18

INTERRUPT HANDLING..1-19
Hawk MPIC ..1-19

xii

CHAPTER 2 Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

Introduction ... 2-1
Overview .. 2-1
Features .. 2-1

Block Diagram... 2-3
Functional Description .. 2-4

Architectural Overview .. 2-4
PPC Bus Interface .. 2-5

PPC Address Mapping .. 2-6
PPC Slave.. 2-7
PPC FIFO .. 2-9
PPC Master.. 2-10
PPC Arbiter ... 2-15
PPC Parity ... 2-17
PPC Bus Timer.. 2-18

PCI Bus Interface ... 2-19
PCI Address Mapping ... 2-19
PCI Slave... 2-22
PCI FIFO... 2-26
PCI Master .. 2-26
Generating PCI Cycles .. 2-29
PCI Arbiter .. 2-34

Endian Conversion ... 2-38
When PPC Devices are Big-Endian.. 2-38
When PPC Devices are Little Endian ... 2-39
PHB Registers ... 2-40

Error Handling.. 2-41
Watchdog Timers.. 2-42
PCI/PPC Contention Handling... 2-44
Transaction Ordering.. 2-47
PHB Hardware Configuration .. 2-49

Multi-Processor Interrupt Controller (MPIC).. 2-50
MPIC Features:... 2-50
Architecture .. 2-51
External Interrupt Interface .. 2-51
CSR’s Readability .. 2-52
Interrupt Source Priority... 2-52
Processor’s Current Task Priority... 2-53
Nesting of Interrupt Events .. 2-53
Spurious Vector Generation.. 2-53
Interprocessor Interrupts (IPI) .. 2-54

xiii

8259 Compatibility ...2-54
Hawk Internal Errror Interrupt..2-54
Timers ...2-55
Interrupt Delivery Modes..2-55
Block Diagram Description ..2-56

Program Visible Registers ...2-58
Interrupt Pending Register (IPR)...2-58
Interrupt Selector (IS) ..2-58
Interrupt Request Register (IRR)...2-59
In-Service Register (ISR) ..2-59
Interrupt Router ...2-59

Programming Notes ..2-61
External Interrupt Service..2-61
Reset State ...2-62

Operation ..2-63
Interprocessor Interrupts..2-63
Dynamically Changing I/O Interrupt Configuration2-63
EOI Register ..2-64
Interrupt Acknowledge Register..2-64
8259 Mode...2-64
Current Task Priority Level ...2-64

Architectural Notes ...2-65
Effects of Interrupt Serialization...2-65

Registers...2-66
PPC Registers ...2-67

Vendor ID/Device ID Registers ..2-69
Revision ID Register ...2-69
General Control-Status/Feature Registers ...2-70
PPC Arbiter/PCI Arbiter Control Registers...2-72
Hardware Control-Status/Prescaler Adjust Register2-76
PPC Error Test/Error Enable Register...2-78
PPC Error Status Register..2-81
PPC Error Address Register ..2-83
PPC Error Attribute Register ...2-84
PCI Interrupt Acknowledge Register ..2-86
PPC Slave Address (0,1 and 2) Registers..2-87
PPC Slave Offset/Attribute (0, 1 and 2) Registers2-88
PPC Slave Address (3) Register ..2-89
PPC Slave Offset/Attribute (3) Registers ..2-90
WDTxCNTL Registers..2-91
WDTxSTAT Registers ..2-94
General Purpose Registers...2-94

xiv

PCI Registers .. 2-95
Vendor ID/ Device ID Registers ... 2-96
PCI Command/ Status Registers ... 2-97
Revision ID/ Class Code Registers ... 2-99
Header Type Register.. 2-99
MPIC I/O Base Address Register ... 2-100
MPIC Memory Base Address Register ... 2-100
PCI Slave Address (0,1,2, and 3) Registers .. 2-101
PCI Slave Attribute/ Offset (0,1,2 and 3) Registers................................ 2-102
CONFIG_ADDRESS Register ... 2-104
CONFIG_DATA Register .. 2-107

MPIC Registers .. 2-108
MPIC Registers ... 2-108
Feature Reporting Register ... 2-111
Global Configuration Register .. 2-112
Vendor Identification Register .. 2-114
Processor Init Register .. 2-114
IPI Vector/Priority Registers... 2-115
Spurious Vector Register .. 2-116
Timer Frequency Register... 2-116
Timer Current Count Registers ... 2-117
Timer Basecount Registers ... 2-118
Timer Vector/Priority Registers .. 2-119
Timer Destination Registers.. 2-120
External Source Vector/Priority Registers .. 2-120
External Source Destination Registers.. 2-122
Hawk Internal Error Interrupt Vector/Priority Register.......................... 2-123
Hawk Internal Error Interrupt Destination Register................................ 2-124
Interprocessor Interrupt Dispatch Registers.. 2-124
Current Task Priority Registers... 2-125
Interrupt Acknowledge Registers.. 2-125
End-of-Interrupt Registers .. 2-126

xv

CHAPTER 3 System Memory Controller (SMC)

Introduction..3-1
Overview...3-1
Bit Ordering Convention ..3-1
Features...3-1

Block Diagrams ...3-2
Functional Description...3-6

SDRAM Accesses...3-6
Four-beat Reads/Writes ...3-6
Single-beat Reads/Writes ..3-6
Address Pipelining...3-6
Page Holding ...3-7
SDRAM Speeds...3-7

SDRAM Organization ..3-9
PPC60x Bus Interface...3-9

Responding to Address Transfers..3-9
Completing Data Transfers..3-9
PPC60x Data Parity ...3-10
PPC60x Address Parity ...3-10
Cache Coherency...3-11
Cache Coherency Restrictions...3-11
L2 Cache Support ..3-11

SDRAM ECC ...3-11
Cycle Types ...3-11
Error Reporting..3-12
Error Logging ..3-13

ROM/Flash Interface ..3-14
ROM/Flash Speeds ..3-19

I2C Interface ...3-22
I2C Byte Write...3-23
I2C Random Read ...3-25
I2C Current Address Read...3-27
I2C Page Write ..3-29
I2C Sequential Read ..3-31

Refresh/Scrub..3-34
CSR Accesses ...3-34
External Register Set ..3-34
Chip Configuration ...3-35

Programming Model ..3-35
CSR Architecture..3-35
Register Summary...3-36

xvi

Detailed Register Bit Descriptions ... 3-38
Vendor/Device Register .. 3-39
Revision ID/General Control Register .. 3-39
SDRAM Enable and Size Register (Blocks A, B, C, D)........................... 3-41
SDRAM Base Address Register (Blocks A/B/C/D) 3-43
CLK Frequency Register... 3-44
ECC Control Register ... 3-45
Error Logger Register ... 3-49
Error_Address Register ... 3-51
Scrub/Refresh Register.. 3-51
Scrub Address Register ... 3-52
ROM A Base/Size Register... 3-53
ROM B Base/Size Register ... 3-56
ROM Speed Attributes Registers .. 3-58
Data Parity Error Log Register ... 3-60
Data Parity Error Address Register... 3-61
Data Parity Error Upper Data Register ... 3-61
Data Parity Error Lower Data Register ... 3-62
I2C Clock Prescaler Register .. 3-63
I2C Control Register ... 3-63
I2C Status Register.. 3-64
I2C Transmitter Data Register .. 3-65
I2C Receiver Data Register... 3-66
SDRAM Enable and Size Register (Blocks E,F,G,H) 3-66
SDRAM Base Address Register (Blocks E/F/G/H).................................. 3-67
SDRAM Speed Attributes Register .. 3-68
Address Parity Error Log Register .. 3-70
Address Parity Error Address Register ... 3-71
32-Bit Counter... 3-72
External Register Set... 3-72
tben Register.. 3-73

Software Considerations.. 3-74
Programming ROM/Flash Devices .. 3-74
Writing to the Control Registers... 3-75
Initializing SDRAM Related Control Registers ... 3-75

SDRAM Speed Attributes... 3-75
SDRAM Size... 3-76
I2C EEPROMs .. 3-76
SDRAM Base Address and Enable... 3-76
SDRAM Control Registers Initialization Example................................... 3-77
Optional Method for Sizing SDRAM ... 3-83

ECC Codes .. 3-86

xvii

CHAPTER 4 Hawk Programming Details

Introduction..4-1
PCI Arbitration...4-1

Hawk MPIC External Interrupts ...4-1
8259 Interrupts..4-2

Exceptions..4-4
Sources of Reset..4-4
Soft Reset ..4-4
CPU Reset...4-4
Error Notification and Handling ...4-5

Endian Issues ...4-6
Processor/Memory Domain ..4-8
MPIC’s Involvement...4-8
PCI Domain ..4-8

APPENDIX A Related Documentation

Motorola Computer Group Documents ..A-1
Manufacturers’ Documents...A-2
Related Specifications...A-3

xix

List of Figures

Figure 1-1. MVME5100 Block Diagram ...1-3
Figure 2-1. Hawk PCI Host Bridge Block Diagram ..2-3
Figure 2-2. PPC to PCI Address Decoding..2-6
Figure 2-3. PPC to PCI Address Translation ...2-7
Figure 2-4. PCI to PPC Address Decoding..2-20
Figure 2-5. PCI to PPC Address Translation ...2-21
Figure 2-6. PCI Spread I/O Address Translation ...2-31
Figure 2-7. Big-to-Little-Endian Data Swap ...2-39
Figure 2-8. Serial Mode Interrupt Scan ...2-51
Figure 2-9. MPIC Block Diagram ...2-57
Figure 3-1. Hawk Used with Synchronous DRAM in a System3-2
Figure 3-2. Hawk’s System Memory Controller Internal Data Paths3-3
Figure 3-3. Overall SDRAM Connections...3-4
Figure 3-4. Hawk’s System Memory Controller Block Diagram3-5
Figure 3-5. Programming Sequence for I2C Byte Write..3-24
Figure 3-6. Programming Sequence for I2C Random Read3-26
Figure 3-7. Programming Sequence for I2C Current Address Read........................3-28
Figure 3-8. Programming Sequence for I2C Page Write..3-30
Figure 3-9. Programming Sequence for I2C Sequential Read3-33
Figure 3-10. Read/Write Check-bit Data Paths..3-46
Figure 4-1. Big-Endian Mode ..4-6
Figure 4-2. Little-Endian Mode ...4-7

xxi

List of Tables

Table 1-1. MVME Key Features ..1-2
Table 1-2. IDSEL Mapping for PCI Devices ...1-9
Table 1-3. On-Board PCI Device Identification ..1-9
Table 1-4. PCI Arbitration Assignments for Hawk ASIC1-10
Table 1-5. Hawk External Register Bus Summary ..1-11
Table 1-6. MVME5100 Status Register ...1-13
Table 1-7. MODFAIL Bit Register ..1-14
Table 1-8. MODRST Bit Register..1-15
Table 1-9. TBEN Bit Register..1-16
Table 1-10. Extended Features Register 1..1-17
Table 1-11. Extended Features Register 2..1-18
Table 1-12. Hawk MPIC Interrupt Assignments..1-19
Table 2-1. PPC Slave Response Command Types ...2-8
Table 2-2. PPC Master Transaction Profiles and Starting Offsets2-11
Table 2-3. PPC Master Write Posting Options...2-12
Table 2-4. PPC Master Read Ahead Options ...2-12
Table 2-5. PPC Master Transfer Types ..2-14
Table 2-6. PPC Arbiter Pin Assignments...2-15
Table 2-7. PCI Slave Response Command Types..2-23
Table 2-8. PCI Master Command Codes ...2-27
Table 2-9. PCI Arbiter Pin Description..2-34
Table 2-10. Fixed Mode Priority Level Setting ...2-35
Table 2-11. Mixed Mode Priority Level Setting ..2-36
Table 2-12. Arbitration Setting ..2-37
Table 2-13. Address Modification for Little-Endian Transfers2-40
Table 2-14. WDTxCNTL Programming..2-44
Table 2-15. PHB Hardware Configuration ..2-49
Table 2-16. PPC Register Map for PHB ..2-67
Table 2-17. PCI Configuration Register ..2-95
Table 2-18. PCI I/O Register..2-96
Table 2-19. MPIC Register Map ..2-108
Table 2-20. Cascade Mode Encoding ..2-113
Table 2-21. Tie Mode Encoding...2-113

xxii

Table 3-1. 60x Bus to SDRAM Estimated Access Timing at 100 MHz
with PC100 SDRAMs (CAS_latency of 2) ... 3-7

Table 3-2. Error Reporting... 3-12

Table 3-3. PPC60x to ROM/Flash (16 Bit Width)
Address Mapping... 3-16

Table 3-4. PPC60x to ROM/Flash (64 Bit Width)
Address Mapping (Continued) .. 3-17

Table 3-5. PPC60x Bus to ROM/Flash Access Timing
(120ns @ 100 MHz) .. 3-19

Table 3-6. PPC60x Bus to ROM/Flash Access Timing
(80ns @ 100 MHz) .. 3-20

Table 3-7. PPC60x Bus to ROM/Flash Access Timing
(50ns @ 100 MHz) .. 3-20

Table 3-8. PPC60x Bus to ROM/Flash Access Timing
(30ns @ 100 MHz) .. 3-21

Table 3-9. Register Summary .. 3-36

Table 3-10. Block_A/B/C/D/E/F/G/H Configurations .. 3-42

Table 3-11. ROM Block A Size Encoding .. 3-54

Table 3-12. rom_a_rv and rom_b_rv encoding ... 3-54

Table 3-13. Read/Write to ROM/Flash.. 3-55

Table 3-14. ROM Block B Size Encoding .. 3-57

Table 3-15. ROM Speed Bit Encodings .. 3-59

Table 3-16. Trc Encoding .. 3-69

Table 3-17. tras Encoding .. 3-69

Table 3-18. Deriving tras, trp, trcd and trc Control Bit Values
from SPD Information ... 3-78

Table 3-19. Programming SDRAM SIZ Bits .. 3-81

Table 3-20. Address Lists for Different Block Size Checks.................................... 3-85

Table 3-21. Syndrome Codes Ordered by Bit in Error .. 3-86

Table 3-22. Single Bit Errors Ordered by Syndrome Code 3-87

Table 4-1. MPIC Interrupt Assignments.. 4-1

Table 4-2. PBC ISA Interrupt Assignments .. 4-3

Table 4-3. Error Notification and Handling... 4-5

Table A-1. Motorola Computer Group Documents ... A-1

Table A-2. Manufacturers’ Documents ... A-2

Table A-3. Related Specifications ... A-3

1-1

11Product Data
and Memory Maps

Introduction
The MVME5100 is a state-of-the-art Single Board Computer. It
incorporates Motorola’s PowerPlus II architecture with a choice of
PowerPC processors—either Motorola’s MPC7400 with AltiVec™
technology for algorithmic intensive computations or the low-power
MPC750.

The MVME5100 incorporates a highly optimized PCI interface and
memory controller enabling up to 582MB memory read bandwidth and
640 MB burst write bandwidth.

The on-board Hawk ASIC provides the bridge function between the
processor’s bus and the PCI bus. It provides 32-bit addressing and 64-bit
data; however, 64-bit addressing (dual address cycle) is not supported. The
ASIC also supports various processor external bus frequencies up to
10MHz.

Note Unless otherwise specified, the designation “MVME5100” refers to all
models of the MVME5100-series Single Board Computers.

What this Guide Provides

This guide provides programming information and other data applicable to
the MVME5100. As an added convienience, it also provides details of the
chip set (Hawk) programming functions. It is important to note that much
of the board’s programming functionality is associated with the Hawk
ASIC. Additional programming information can also be found in the
following manuals (refer to Appendix A, Related Documentation):

❏ PPCBug Firmware User’s Manual

❏ PPCBug Diagnostics Manual

❏ MPC750 RISC Microprocessor User’s Manual

❏ MPC7400 RISC Microprocessor User’s Manual

❏ Universe II User Manual

1-2 Computer Group Literature Center Web Site

Product Data and Memory Maps
1

The following table lists the key features of the MVME5100.

Table 1-1. MVME Key Features

Feature Specification

Microprocessors and
Bus Clock Frequency

• MPC7400 @400 MHz Internal Clock Frequency
• MPC750 @450 MHz Internal Clock Frequency
• Bus Clock Frequency up to 100 MHz

L2 Cache (Optional) • 1MB (MPC750) or 2MB (MPC7400) using burst-mode
SRAM modules.

Memory • EEPROM, on-board programmable
• 1MB via two 32-pin PLCC/CLCC sockets;

16MB Surface Mount

Main Memory
(SDRAM)

• PC100 ECC SDRAM with 100 MHz bus
• 32MB to 512MB on board, expandable to

1GB via RAM500 memory mezzanine

NVRAM • 32KB (4KB available for users)

Memory Controller • Hawk System Memory Controller (SMC)

PCI Host Bridge • Hawk PCI Host Bridge (PHB)

Interrupt Controller • Hawk Multi-Processor Interrupt Controller (MPIC)

Peripheral Support • Dual 16550-Compatible Asynchronous Serial Port’s
Routed to the Front Panel RJ45 Connnector (COM1) and
On-Board Header (COM2)

• Dual Ethernet Interfaces, one routed to the Front Panel
RJ45, one routed to the Front Panel RJ45 or optionally
routed to P2, RJ45 on MVME761

VMEbus • Tundra Universe Controller, 64-bit PCI
• Programmable Interrupter & Interrupt Handler
• Programmable DMA Controller With Link List Support
• Full System Controller Functions

PCI/PMC/Expansion • Two 32/64-bit PMC Slots with Front-Panel I/O Plus,
P2 Rear I/O (MVME2300 Routing)

• One PCI Expansion Connector (for the PMCSpan)

Miscellaneous • Combined RESET and ABORT Switch
• Status LEDs

Form Factor • 6U VME

Introduction

http://www.motorola.com/computer/literature 1-3

1

The following block diagram illustrates the architecture of the
MVME5100 Single Board Computer.

Figure 1-1. MVME5100 Block Diagram

Processor
750 Max

10
0

M
H

z
M

P
C

60
4

P
ro

ce
ss

or
 B

us

VME P1

P
C

I
E

xp
an

si
on

System
Registers

FLASH
1MB to 17MBClock

Generator

VME Bridge
Universe 2

Ethernet 1
10/100TX

Buffers

RTC/NVRAM/WD
M48T37V

TL16C550
UART/9pin

F
ro

nt
 P

an
el

VME P2

R
J4

5
P

M
C

 F
ro

nt
 I

/O
P

M
C

 F
ro

nt
 I

/O

SL
ot

1
 S

lo
t2

2,
64

-b
it

 P
M

C
 S

lo
ts

L2 Cache

1M,2M

Ethernet 2
10/100TX

10
/1

00
T

x
R

J4
5

10
/1

00
T

x

Hawk X-bus

R
J4

5
D

E
B

U
G

planar

761 or PMC

IP
M

C
7
6
1
 R

E
C

E
P

T
A

C
L

E

Mezzanine SDRAM
32MB to 512MB

SDRAM
32MB to 512MB

HDR

Hawk Asic
System Memory Controller (SMC)

 and PCI Host Bridge (PHB)

TL16C550
UART

33 MHz 32/64-bit PCI Local Bus

1-4 Computer Group Literature Center Web Site

Product Data and Memory Maps
1

Memory maps
The following sections describe the memory maps for the MVME5100.

Processor Memory Map

Following a reset, the memory map presented to the processor is identical
to the CHRP memory map described in the PowerPlus II Engineering
Specification listed in Appendix A, Related Documentation.

The MVME5100 is fully capable of supporting both the PREP and the
CHRP processor memory maps with ROM/FLASH size limited to
16MBytes and RAM size limited to 1GB.

PCI / VME Memory Map

Following a reset, the Hawk ASIC disables all PCI slave map decoders. As
stated above, the MVME5100 is fully capable of supporting both the PREP
and the CHRP PCI and VME memory maps.

System Bus
The following sections describe the processor system bus for the
MVME5100.

Processors

The MVME5100 has the BGA foot print that supports the MPC7400
processor. The maximum external processor bus speed is 100 MHz. Parity
checking is supported for the system address and data busses.

Processor Type Identification

The type of the processor can be determined by reading the Processor
Version Register (PVR). The PVR value for the MPC7400 processor is
0x000C0100h.

System Bus

http://www.motorola.com/computer/literature 1-5

1

Processor PLL Configuration

The processor internal clock frequency (core frequency) is a multiple of
the system bus frequency. The processor has four configuration pins,
PLL_CFG[0:3], for hardware strapping of the processor core frequency
between 2x and 8x the system bus frequency, in 0.5x steps.

The PLL configuration shall be dynamic at power-up and be dependent
upon the existence of a memory mezzanine attached to the host board.

L2 Cache

The MVME5100 incorporates an L2 cache using a 2-way, set-associative
tag memory located in the MPC7400 processor, with external direct-
mapped synchronous SRAMs for data storage. The external SRAMs are
accessed through a dedicated L2 cache port on the processor.

L2 Cache SRAM Size

The L2 cache port will support SRAM configurations of 1MB or 2MB.
The L2 cache size is defined by reading the Vital Product Data (VPD)
SROM and programming the L2SIZ bits in the processor’s Cache Control
Register (L2CR).

Cache Speed

The MPC7400 cache port provides the clock for the synchronous SRAMs.
This clock is generated by dividing the processor core frequency.
Available core-to-cache dividers range from 1 to 4, in .5 steps.

The core-to-cache ratio is selected by reading the VPD SROM and
programming the L2CLK bits of the processor’s Cache Control Register.

Flash Memory

The MVME5100 Flash memory characteristics are fully compatible with
those specified in the Hawk’s specification for Flash Blocks
A and B.

1-6 Computer Group Literature Center Web Site

Product Data and Memory Maps
1

System Memory

MVME5100 system memory characteristics are fully compatible with
those of the Hawk ASIC for memory Blocks A, B, C, and E.

The on-board memory Blocks are Blocks A and B. The optional add-on
mezzanine memory Blocks are C (first mezzanine attached) and
E (second mezzanine attached).

Serial Presence Detect (SPD) Definitions

The MVME5100 SPD uses the SPD JEDEC standard definition. On board
SPD for SDRAM Bank A or both A and B of the Hawk shall be accessed
at Address $A8 . Only Bank A or Banks A and B will be populated. If both
banks A and B are populated, they will be the same speed and memory
size. Memory Mezzanine 1 SPD for SDRAM Bank C of the Hawk shall be
accessed at Address $AA. Memory Mezzanine 2 SPD for SDRAM Bank
E of the Hawk shall be accessed at address $AC.

Hawk ASIC

Hawk I2C interface and configuration information

The Hawk ASIC has an I2C (Inter-Integrated Circuit) two-wire serial
interface bus: Serial Clock Line (SCL) and Serial Data Line (SDA)
composed of two 256 x 8 Serial EEPROM’s.

This interface has master-only capability and is used to communicate the
configuration information to a slave I2C serial EEPROM. A seperate
EEPROM is used to maintain the configuration information related to the
board (Vital Product Data, User configuration Data, etc.) and a seperate
EEPROM is used for on-board Memory Subsystem Data (MSD).

If a optional memory mezzanine is used, that mezzanine shall contain a
seperate EEPROM with its own memory subsystem data. Each slave
device connected to the I2C bus is software addressable by a unique
address.

Hawk ASIC

http://www.motorola.com/computer/literature 1-7

1

There can be seven slave devices connected to the I2C bus on the
MVME5100. The Vital Product Data (VPD) address shall be $A0. The
User configuration Data (UPD) address shall be $A2.

The on-board MSD address (Memory Bank A and B) shall be $A8. The
optional Memory Mezzanine 1 MSD addresses shall be $AA (Memory
Bank C) and $AC (Memory Bank E) for mezzanine 2.

The IPMC761 VPD address shall be $A4. A digital thermometer
(DS1621) I2C address shall be $96. Some configuration options in the
Hawk ASIC must be configured at power-up reset time before software
performs any accesses to it. Other configuration information is needed by
software to properly configure the Hawk’s control registers. This
information can be obtained from devices connected to the I2C bus.

Vital Product Data and Serial Presence Detect Data

These registers are partially described in the PowerPlus II Programming
Manual listed in Appendix A, Related Documentation. These registers
shall be accessed through the I2C interface of the Hawk ASIC.

PCI Local Bus

The on-board PCI devices on MVME5100 are as follows:

❏ The Hawk ASIC

❏ Port 1 and Port 2 Ethernet Controllers

❏ Universe ASIC

❏ PMC Slots

❏ PCI expansion slot

1-8 Computer Group Literature Center Web Site

Product Data and Memory Maps
1

The Ethernet Controller

The Ethernet interface is provided by two Fast Ethernet PCI controller
chips. The presence of the Ethernet device can be positively determined by
reading the Vital Product Data Serial EEPROM which provides storage of
the MVME5100 hardware configuration.

PMC/PCI Expansion Slots

Up to two PMC slots and one PCIX slot may be present. The presence of
the PMC’s and/or PCIX can be positively determined by reading the Base
Module Feature Register. The INTA#, INTB#, INTC#, and INTD# from
the three PMC/PCIX slots are routed by MVME5100 as follows:

The Universe ASIC

The VMEbus interface is provided by the Universe ASIC.

PCI Configuration Space

Access to MVME5100 configuration space is accomplished via the Hawk
ASIC using the CONADD and CONDAT Registers. The location and
operation of these registers is fully described within the Universe II User
Manual listed in Appendix A, Related Documentation. The IDSEL
assignments for MVME5100 are shown on the following table:

Hawk MPIC

PMC Slot 1

INTA# INTB# INTC# INTD#

PMC Slot 2

INTA# INTB# INTC# INTD#

PCIX Slot

INTA# INTB# INTC# INTD#

IRQ9 IRQ10 IRQ11 IRQ12

Hawk ASIC

http://www.motorola.com/computer/literature 1-9

1

The following table shows the Vendor ID, the Device ID, and Revision ID
for each of the on-board PCI devices on MVME5100:

Table 1-2. IDSEL Mapping for PCI Devices

Device
Number

Field

PCI
Address

Line
IDSEL Connection

0b0_0000 AD31 Hawk ASIC

0b0_1011 AD11 PCI/ISA Bridge (on IPMC761)

0b0_1100 AD12 Not used

0b0_1101 AD13 Universe VME Bridge ASIC

0b0_1110 AD14 Ethernet Device Port 1 (Front Panel)

0b1_0000 AD16 PMC Slot 1 (SCSI Device (on IPMC761))

0b1_0001 AD17 PMC Slot 2

0b1_0011 AD19 Ethernet Device Port 2 (Front Panel or P2)

0b1_0100 AD20 PCI Expansion (PMCSPAN) Note: AD20 connection to
IDSEL is made on the PMCSPAN

Table 1-3. On-Board PCI Device Identification

Device Device Vendor ID Device ID Revision ID

SMC,PHB Hawk ASIC 1057h 4803h 01h

VME Universe ASIC 10E3h 0000h XXh

Ethernet Intel
GD82559ER

8086h 1209h 09h

1-10 Computer Group Literature Center Web Site

Product Data and Memory Maps
1

PCI Arbitration Assignments for Hawk ASIC

The PCI arbitration is performed by the Hawk ASIC which supports eight
external PCI masters. This includes Hawk and 7 external PCI masters. The
arbitration assignments on MVME5100 are as follows:

Table 1-4. PCI Arbitration Assignments for Hawk ASIC

PCI BUS REQUEST PCI Master(s)

Request 0 (PARBI0) Universe ASIC (VMEbus) PARBI0

Request 1 (PARBI1) PMC Slot 1 (SCSI device on IPMC761 in PMC Slot 1)

Request 2 (PARBI2) PIB device on IPMC761 in PMC Slot 1

Request 3 (PARBI3) PMC Slot 2

Request 4 (PARBI4) PCIX Slot

Request 5 (PARBI5) Ethernet Port 1

Request 6 (PARBI6) Ethernet Port 2

Hawk ASIC

http://www.motorola.com/computer/literature 1-11

1

Hawk External Register Bus Address Assignments

This section will describe in detail the Hawk External Register Bus
Address Assignments on MVME5100. The address range for the External
Register Set on MVME5100 is fixed at $FEF88000-$FEF8FFFF.

MVME5100 Hawk External Register Bus Summary

The Hawk External Register Summary of the MVME5100 is shown in the
table below:

Table 1-5. Hawk External Register Bus Summary

Address

Bits:
REQUIRED (r)
OPTIONAL (o)
by PowerPlus II

Register Name

0 1 2 3 4 5 6 7

$FEF88000

THIS GROUP
REQUIRED

UART - 1 -RBR/THR

$FEF88010 UART - 1 -IER

$FEF88020 UART - 1 -IIR/FCR

$FEF88030 UART - 1 -LCR

$FEF88040 UART - 1 -MCR

$FEF88050 UART - 1 -LSR

$FEF88060 UART - 1 -MSR

$FEF88070 UART - 1 -SCR

$FEF88080 o r r STATUS REGISTER

$FEF88090 o r r MODFAIL REGISTER

$FEF880A0 o r MODRST REGISTER

$FEF880C0 o r TBEN REGISTER

1-12 Computer Group Literature Center Web Site

Product Data and Memory Maps
1

$FEF880C8
THIS GROUP
OPTIONAL

NVRAM/RTC ADDR

$FEF880D0 NVRAM/RTC ADDR

$FEF880D8 NVRAM/RTC DATA

$FEF880E0 o o o o o o o o SOFTWARE READABLE
HEADER/SWITCH

$FEF880E8 REQUIRED GEOGRAPHIC Address
REGISTER

$FEF880F0 o o o o o o o o EXTENDED FEATURES
REGISTER 1

$FEF88100 o EXTENDED FEATURES
REGISTER 2

$FEF88200

THIS GROUP
OPTIONAL

UART - 2-RBR/THR

$FEF88210 UART - 2-IER

$FEF88220 UART - 2-IIR/FCR

$FEF88230 UART - 2-LCR

$FEF88240 UART - 2-MCR

$FEF88250 UART - 2-LSR

$FEF88260 UART - 2-MSR

$FEF88270 UART - 2-SCR

Table 1-5. Hawk External Register Bus Summary (Continued)

Address

Bits:
REQUIRED (r)
OPTIONAL (o)
by PowerPlus II

Register Name

0 1 2 3 4 5 6 7

Hawk ASIC

http://www.motorola.com/computer/literature 1-13

1

Status Register

The MVME5100 implementation of this Register is fully compliant with
the description provided within the PowerPlus II programming with the
following exceptions:

An 8-bit status register, accessible through the External Register Set port,
which defines the status of the Module.

SYSCON_ System Controller Mode bit. If this bit is set, the module is not the
master of its PCI bus (PCI bus 0). If this bit is cleared, the module
is the master of its PCI bus (PCI bus 0). This bit shall always read
as cleared (“0”).

BAUDOUT This is the baud output clock of the TL16C550 UART, referenced
to the 1.8432 MHz UART oscillator. This signal can be used as a
timing reference.

FUSE This bit provides the current state of the FUSE signal. If set, at
least one of the planar fuses or polyswitches is open.

Table 1-6. MVME5100 Status Register

REG Status Register - FEF88080h

BIT RD0 RD1 RD2 RD3 RD4 RD5 RD6 RD7

FIELD

FU
SE

B
A

U
D

O
U

T

S
Y

SC
O

N
_

OPER R R R R R R R R

RESET X X X X X X X 0

REQUIRED
OR

OPTIONAL

X X X X X O R R

1-14 Computer Group Literature Center Web Site

Product Data and Memory Maps
1

MODFAIL Bit Register

The MVME5100 implementation of this Register is fully compliant with
the PowerPlus PowerPlus IIII programming with the following
exceptions:

The MODFAIL Bit Register provides the means to illuminate the module
Fail LED.

MODFAIL Setting this bit will illuminate the Board Fail LED. Clearing this
bit will turn off the LED.

ABORT_ This bit provides the current state of the ABORT_ signal. If set,
ABORT_ is not active. If cleared, the ABORT_ signal is active.

GREEN_LED This bit not used.

Table 1-7. MODFAIL Bit Register

REG Module Fail Bit Register - FEF88090h

BIT RD0 RD1 RD2 RD3 RD4 RD5 RD6 RD7

FIELD

G
R

E
E

N
_L

E
D

(N
O

T
 U

S
E

D
)

A
B

O
R

T
_

M
O

D
FA

IL

OPER R R R R R R/W R R/W

RESET X X X X X 0 X 1

REQUIRED
OR

OPTIONAL

X X X X X O R R

Hawk ASIC

http://www.motorola.com/computer/literature 1-15

1

MODRST Bit Register

The MODRST Bit register provides the means to reset the board.

MODRST Setting this bit resets the module. This bit will automatically clear
following the reset. This bit is undefined when reading.

RESET_REQ Clearing this bit causes the RST_REQ_ signal to be asserted. This
bit will automatically deassert following reset. The host board is
expected to assert a PCI reset when this signal is cleared.

Table 1-8. MODRST Bit Register

REG Module Reset Bit Register - FEF880A0h

BIT D0 D1 D2 D3 D4 D5 D6 D7

FIELD

R
E

S
E

T
_R

E
Q

(N
ot

 U
se

d

M
O

D
R

ST

OPER R R R R R R R W

RESET X X X X X X X 0

1-16 Computer Group Literature Center Web Site

Product Data and Memory Maps
1

TBEN Bit Register

The MVME5100 implementation of this Register is fully compliant with
the PowerPlus II Programming with the following exceptions:

The TBEN Bit register provides the means to control the Processor
Timebase Enable input.

TBEN0 Processor 0 Time Base Enable. When this bit is cleared, the TBEN
pin of Processor 0 will be driven low. When this bit is set, the
TBEN pin is driven high.

TBEN1 This bit is not used.

NVRAM/RTC & Watchdog Timer
The MVME5100’s NVRAM/RTC and Watchdog Timer functions are
fully compliant with the PowerPlus II internal programming configuration.

Software Readable Header Register
The MVME5100’s use of this Register is fully compliant with the
PowerPlus II internal programming configuration.

Table 1-9. TBEN Bit Register

REG TBEN Bit Register - Offset 80C0h

BIT RD0 RD1 RD2 RD3 RD4 RD5 RD6 RD7

FIELD

T
B

E
N

1
(N

O
T

 U
SE

D
)

T
B

E
N

0

OPER R R R R R R R/W R/W

RESET X X X X X X 1 1

REQUIRED
OR

OPTIONAL

X X X X X X O R

Hawk ASIC

http://www.motorola.com/computer/literature 1-17

1

Geographical Address Register (VME board)

The MVME5100’s use of this Register is fully compliant with the
PowerPlus II internal programming configuration.

Extended Features Register 1

This register is used to read if a PMC board is present or if a PCI expansion
slot is present.

PMC1P_L PMC Module 1 Present. If set, there is no PMC module installed
in position 1. If cleared, the PMC module is installed

PMC2P_L PMC Module 2 Present. If set, there is no PMC module installed
in position 2. If cleared, the PMC module is installed.

MMEZ1_P_L Memory Mezzanine 1 present. When set there is no memory
mezzanine 1 present. When cleared there is a memory mezzanine
1 present.

MMEZ2_P_L Memory Mezzanine 2 present. When set there is no memory
mezzanine 1 present. When cleared there is a memory mezzanine
2 present.

Table 1-10. Extended Features Register 1

REG Extended Features Register 1 - Offset 80F0h

BIT RD0 RD1 RD2 RD3 RD4 RD5 RD6 RD7

FIELD

U
SB

V
1_

O
K

(N
O

T
 U

SE
D

)

U
SB

V
0_

O
K

(N
O

T
 U

SE
D

)

T
M

PR
SN

T
_L

(N
O

T
 U

SE
D

)

P
M

C
1P

_L

P
M

C
2P

_L

PM
C

2_
E

R
D

Y
(N

O
T

 U
SE

D
)

M
M

E
Z

1_
P_

L

M
M

E
Z

2_
P_

L

OPER R R R R R R R R

RESET x x x x x x x x

REQUIRED
OR

OPTIONAL

O O O O O O O O

1-18 Computer Group Literature Center Web Site

Product Data and Memory Maps
1

Extended Features Register 2

This register is used to read if a PMC board is present or if a PCI expansion
slot is present.

PCIXP_L PCI Expansion Slot Present. If set, there is no PCIX device
installed. If cleared, the PCIX slot contains a PCI Mezzanine Card.

Table 1-11. Extended Features Register 2

REG Extended Features Register 2 - Offset 80F0h

BIT RD0 RD1 RD2 RD3 RD4 RD5 RD6 RD7

FIELD

P
C

IX
P_

L

OPER R R R R R R R R

RESET x x x x x x x x

REQUIRED
OR

OPTIONAL

O O O O O O O O

INTERRUPT HANDLING

http://www.motorola.com/computer/literature 1-19

1

INTERRUPT HANDLING
The interrupt architecture for the MVME5100 is fully compliant with the
PowerPlus II internal programming configuration. The following sections
further describe MVME5100 interrupt related issues.

Hawk MPIC

The Hawk MPIC interrupt assignment for the MVME5100 is shown in the
following table:

Table 1-12. Hawk MPIC Interrupt Assignments

MPIC
IRQ

Edge/
Level

Polarity Interrupt Source Notes

IRQ0 Level High PIB (8259) from IPMC761 in PMC Slot 1 3

IRQ1 Level Low TL16C550 UART Serial Port 1,2 1,4

IRQ2 Level Low PCI-Ethernet Device Port 1 (Front panel or P2)

IRQ3 Level Low Hawk WDT1O_L, WDT2O_L 5

IRQ4 Level Low Thermal Alarm output (TOUT) of
Dallas Semi DS1621

6

IRQ5 Level Low PCI-VME INT 0 (Universe LINT0#) 2

IRQ6 Level Low PCI-VME INT 1 (Universe LINT1#) 2

IRQ7 Level Low PCI-VME INT 2 (Universe LINT2#) 2

IRQ8 Level Low PCI-VME INT 3 (Universe LINT3#) 2

IRQ9 Level Low PCI-PMC1 INTA#, PMC2 INTB#, PCIX INTA#

IRQ10 Level Low PCI-PMC1 INTB#, PMC2 INTC#, PCIX INTB#

IRQ11 Level Low PCI-PMC1 INTC#, PMC2 INTD#, PCIX INTC#

IRQ12 Level Low PCI-PMC1 INTD#, PMC2 INTA#, PCIX INTD#

IRQ13 Level Low PCI-Ethernet Device Port 2 (Front panel only)

IRQ14 Level Low ABORT_L

IRQ15 Level Low RTC - Alarm 1

1-20 Computer Group Literature Center Web Site

Product Data and Memory Maps
1

Notes 1. Interrupting device is addressed from Hawk External
Register Bus.

2. The mapping of interrupt sources from the VMEbus and
Universe internal interrupt sources are programmable via the
Local Interrupt Map 0 Register and the Local Interrupt
Map 1 Register in the Universe ASIC.

3. This interrupt is provided for software compatibility with
the MVME2700.

4. This is the logical OR of the two UART’s.

5. This is the wired OR of the two watch dog interrupts.

6. The DS1621 Digital Thermometer and Thermostat provides
9-bit temperature readings which indicate the temperature of the
device. The thermal alarm output, TOUT , is active when the
temperature of the device exceeds a user-defined
temperature TH.

2-1

22Hawk PCI Host Bridge & Multi-
Processor Interrupt Controller

Introduction

Overview

This chapter describes the architecture and usage of the PowerPC to PCI
Local Bus Bridge (PHB) and the Multi-Processor Interrupt Controller
(MPIC) portion of the Hawk ASIC. The Hawk is intended to provide
PowerPC 60x (PPC60x) compliant devices access to devices residing on
the PCI Local Bus. In the remainder of this chapter, the PPC60x bus will
be referred to as the PPC bus and the PCI Local Bus as PCI. PCI is a high
performance 32-bit or 64-bit burst mode, synchronous bus capable of
transfer rates of 132 MByte/sec in 32-bit mode or 264 MByte/sec in 64-bit
mode using a 33 MHz clock.

Features

❏ PPC Bus Interface

– Direct interface to MPC750 or MPC7400 processor.

– 64-bit data bus, 32-bit address bus.

– Four independent software programmable slave map decoders.

– Multi-level write post FIFO for writes to PCI.

– Support for PPC bus clock speeds up to 100 MHz.

– Selectable big or little endian operation.

– 3.3 V signal levels

❏ PCI Interface

– Fully PCI Rev. 2.1 compliant.

– 32-bit addressing, 32 or 64-bit data bus.

– Support for accesses to all three PCI address spaces.

– Multiple-level write posting buffers for writes to the PPC bus.

2-2 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 – Read-ahead buffer for reads from the PPC bus.

– Four independent software programmable slave map decoders.

❏ Interrupt Controller

– MPIC compliant.

– MPIC programming model.

– Support for 16 external interrupt sources and two processors.

– Supports 15 programmable Interrupt and Processor Task priority
levels.

– Supports the connection of an external 8259 for ISA/AT
compatibility.

– Distributed interrupt delivery for external I/O interrupts.

– Multiprocessor interrupt control allowing any interrupt source to
be directed to either processor.

– Multilevel cross processor interrupt control for multiprocessor
synchronization.

– Four Interprocessor Interrupt sources

– Four 32-bit tick timers.

– Processor initialization control

❏ Two 64-bit general purpose registers for cross-processor
messaging.

Block Diagram

http://www.motorola.com/computer/literature 2-3

2Block Diagram

Figure 2-1. Hawk PCI Host Bridge Block Diagram

E
nd

ia
n

M
ux

D
at

a

C
om

m
an

d

F
IF

O

F
IF

O

E
nd

ia
n

M
ux

D
at

a

C
om

m
an

d

F
IF

O

F
IF

O

P
C

I F
IF

O

P
P

C
 F

IF
O

R
eg

P
C

I I
np

ut

R
eg

P
P

C
 In

pu
t

P
P

C
 R

eg
is

te
rs

P
C

I R
eg

is
te

rs

M
ux

R
eg

P
C

I O
ut

pu
t

M
ux

R
eg

P
P

C
 O

ut
pu

t

M
P

IC
 In

te
rfa

ce

P
P

C
 D

ec
od

e

P
C

I D
ec

od
e

P
C

I S
la

ve

P
P

C
 S

la
ve

P
P

C
 M

as
te

r

P
C

I M
as

te
r

P
C

I
P

C
I

P
P

C
P

P
C

P
P

C

A
rb

ite
r

P
ar

ity

A
rb

ite
r

Lo
ck

Ti
m

er

P
P

C
/P

C
I

P
C

I H
os

t B
rid

ge
 (P

H
B

)

P
C

I B
us

P
P

C
60

x
B

us

C
lo

ck

C
lo

ck
s

R
es

et

C
lo

ck
 P

ha
si

ng

2-4 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Functional Description

Architectural Overview

A functional block diagram of the Hawk’s PHB is shown in Figure 2-1.
The PHB control logic is subdivided into the following functions: PCI
slave, PCI master, PPC slave and PPC master. The PHB data path logic is
subdivided into the following functions: PCI FIFO, PPC FIFO, PCI Input,
PPC Input, PCI Output, and PPC Output. Address decoding is handled in
the PCI Decode and PPC Decode blocks. The control register logic is
contained in the PCI Registers and PPC Registers blocks. The clock
phasing and reset control logic is contained within the PPC/PCI Clock
block.

The FIFO structure implemented within PHB has been selected to allow
independent data transfer operations to occur between PCI bound
transactions and PPC bound transactions. The PCI FIFO is used to support
PPC bound transactions, while the PPC FIFO is used to support PCI bound
transactions. Each FIFO supports a command path and a data path. The
data path portion of each FIFO incorporates a multiplexer to allow
selection between write data and read data, as well as logic to handle the
PPC/PCI endian function.

All PPC originated PCI bound transactions utilize the PPC Slave and PCI
Master functions for maintaining bus tracking and control. During both
write and read transactions, the PPC Slave will place command
information into the PPC FIFO. The PCI Master will draw this command
information from the PPC FIFO when it is ready to process the transaction.
During write transactions, write data is captured from the PPC60x bus
within the PPC Input block. This data is fed into the PPC FIFO. The PCI
Output block removes the data from the FIFO and presents it to the PCI
bus. During read transactions, read data is captured from the PCI bus
within the PCI Input block. From there, the data is fed into the PPC FIFO.
The PPC Output block removes the data from the FIFO and presents it to
the PPC60x bus.

Functional Description

http://www.motorola.com/computer/literature 2-5

2All PCI originated PPC bound transactions utilize the PCI Slave and PPC
Master functions for maintaining bus tracking and control. During both
write and read transactions, the PCI Slave will place command information
into the PCI FIFO. The PPC Master will draw this command information
from the PCI FIFO when it is ready to process the transaction. During write
transactions, write data is captured from the PCI bus within the PCI Input
block. This data is fed into the PCI FIFO. The PPC Output block removes
the data from the FIFO and presents it to the PPC60x bus. During read
transactions, read data is captured from the PPC60x bus within the PPC
Input block. From there, the data is fed into the PCI FIFO. The PCI Output
block removes the data from the FIFO and presents it to the PCI bus.

The MPIC is hosted by the PHB. A custom MPIC Interface is provided to
allow write data and control to be passed to the MPIC and to allow read
data to be passed back to the PHB. The MPIC Interface is controlled
exclusively by the PCI Slave.

The data path function imposes some restrictions on access to the MPIC,
the PCI Registers, and the PPC Registers. The MPIC and the PCI Registers
are only accessible to PCI originated transactions. The PPC Registers are
only accessible to PPC originated transactions.

PHB has several small blocks that support various PPC functions.
Arbitration is provide by the PPC Arbiter block. Cache line locking (via
PCI Lock) is handled by the PPC Lock block. Finally, a timer function is
implemented in the PPC Timer block.

PHB also provides miscellaneous support for various PCI functions.
Arbitration on the PCI bus is handled by the PCI Arbiter block. Parity
checking and generation is handled within the PCI Parity block.

PPC Bus Interface

The PPC Bus Interface connects directly to one MPC750 or MPC7400
microprocessor and one peripheral PPC60x master device. It uses a subset
of the capabilities of the PPC bus protocol.

2-6 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 PPC Address Mapping

The PHB will map either PCI memory space or PCI I/O space into PPC
address space using four programmable map decoders. These decoders
provide windows into the PCI bus from the PPC bus. The most significant
16 bits of the PPC address are compared with the address range of each
map decoder, and if the address falls within the specified range, the access
is passed on to the PCI. An example of this is shown in Figure 2-2.

Figure 2-2. PPC to PCI Address Decoding

There are no limits imposed by the PHB on how large of an address space
a map decoder can represent. There is a lower limit of a minimum of 64
KBytes due to the resolution of the address compare logic.

For each map, there is an associated set of attributes. These attributes are
used to enable read accesses, enable write accesses, enable write posting,
and define the PCI transfer characteristics.

PPC Bus Address 8 0 8 0 1 2 3 4
3116150

XSADDx Register 7 0 8 0 9 0 0 0
3116150

>= <=andDecode is

Functional Description

http://www.motorola.com/computer/literature 2-7

2Each map decoder also includes a programmable 16-bit address offset. The
offset is added to the 16 most significant bits of the PPC address, and the
result is used as the PCI address. This offset allows PCI devices to reside
at any PCI address, independent of the PPC address map. An example of
this is shown in Figure 2-3.

Figure 2-3. PPC to PCI Address Translation

Care should be taken to ensure that all programmable decoders decode
unique address ranges since overlapping address ranges will lead to
undefined operation.

PPC Slave

The PPC slave provides the interface between the PPC bus and the PPC
FIFO. The PPC slave is responsible for tracking and maintaining
coherency to the PPC60x processor bus protocol. The actions taken by the
PPC Slave to service a transaction are dependent upon whether the
transaction is posted or compelled. During compelled transactions, such as
a read or a non-posted single beat write, the PPC Slave will hold off
asserting AACK_ and TA_ until after the transaction has completed on the
PCI bus. This has the effect of removing all levels of pipelining during
compelled PHB accesses. The interdependency between the assertion of

PPC Bus Address 8 0 8 0 1 2 3 4
3116150

XSOFFx Register 9 0 0 0
150

+

PCI Bus Address 1 0 8 0 1 2 3 4
0151631

=

2-8 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 AACK_ and TA_ allows the PPC Slave to assert a retry to the processor in
the event that the transaction is unable to complete on the PCI side. It
should be noted that any transaction that crosses a PCI word boundary
could be disrupted after only having a portion of the data transferred.

The PPC Slave cannot perform compelled burst write transactions. The
PPC bus protocol mandates that the qualified retry window must occur no
later than the assertion of the first TA_ of a burst transaction. If the PHB
was to attempt a compelled linkage for all beats within a burst write, there
is a possibility that the transaction could be interrupted. The interruption
would occur at a time past the latest qualified retry window and the PPC
Slave would be unable to retry the transaction. Therefore, all burst write
transactions will be posted regardless of the write posting attribute within
the associated map decoder register.

If the PPC Slave is servicing a posted write transaction and the PPC FIFO
can accept the transaction, the assertion of AACK_ and TA_ will occur as
soon as the PPC Slave decode logic settles out and the PPC bus protocol
allows for the assertion. If the PPC FIFO is full, the PPC Slave will hold
the processor with wait states (AACK_ will not be asserted) until there is
room within the PPC FIFO to store the pending transaction.

The PPC slave divides PPC command types into three categories: address
only, write, and read. If a command type is an address only and the address
presented at the time of the command is a valid PHB address, the PPC
slave will respond immediately by asserting AACK_. The PHB will not
respond to address only cycles where the address presented is not a PHB
address. The response of the PPC slave to command types is listed in
Table 2-1.

Table 2-1. PPC Slave Response Command Types

PPC Transfer Type
Transfer
Encoding

Transaction

Clean Block 00000 Addr Only

Flush Block 00100 Addr Only

SYNC 01000 Addr Only

Kill Block 01100 Addr Only

EIEIO 10000 Addr Only

Functional Description

http://www.motorola.com/computer/literature 2-9

2

PPC FIFO

A 64-bit by 8 entry FIFO (2 cache lines total) is used to hold data between
the PPC Slave and the PCI Master to ensure that optimum data throughput
is maintained. The same FIFO is used for both read and write transactions.
A 46-bit by 4 entry FIFO is used to hold command information being
passed between the PPC Slave and the PCI Master. If write posting has
been enabled, then the maximum number of transactions that may be
posted is limited by the abilities of either the data FIFO or the command
FIFO.

ECOWX 10100 No Response

TLB Invalidate 11000 Addr Only

ECIWX 11100 No Response

LWARX 00001 Addr Only

STWCX 00101 Addr Only

TLBSYNC 01001 Addr Only

ICBI 01101 Addr Only

Reserved 1XX01 No Response

Write-with-flush 00010 Write

Write-with-kill 00110 Write

Read 01010 Read

Read-with-intent-to-modify 01110 Read

Write-with-flush-atomic 10010 Write

Reserved 10110 No Response

Read-atomic 11010 Read

Read-with-intent-to-modify-atomic 11110 Read

Reserved 00011 No Response

Reserved 00111 No Response

Read-with-no-intent-to-cache 01011 Read

Reserved 01111 No Response

Reserved 1xx11 No Response

Table 2-1. PPC Slave Response Command Types (Continued)

PPC Transfer Type
Transfer
Encoding

Transaction

2-10 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 For example, two burst transactions would make the data FIFO the limiting
factor for write posting. Four single beat transactions would make the
command FIFO be the limiting factor. If either limit is exceeded, then any
pending PPC transactions will be delayed (AACK_ and TA_ will not be
asserted) until the PCI Master has completed a portion of the previously
posted transactions and created some room within the command and/or
data FIFOs.

The PHB does not support byte merging or byte collapsing. Each and
every single beat transaction presented to the PPC Slave will be presented
to the PCI bus as a unique single beat transfer.

PPC Master

The PPC Master can transfer data either in 1-to-8 byte single beat
transactions or 32 byte, four beat burst transactions. This limitation is
strictly imposed by the PPC60x bus protocol. The PPC Master will attempt
to move data using burst transfers whenever possible. If a transaction starts
on a non-cache line address, the PPC Master will perform as many single
beat transactions as needed until the next highest cache line boundary is
reached. If a write transaction ends on a non-cache line boundary, then the
PPC Master will finish the transaction with as many single beat
transactions as needed to complete the transaction.

Table 2-2 shows the relationship between starting addresses and PPC60x
bus transaction types when write posting and read ahead are enabled.

Functional Description

http://www.motorola.com/computer/literature 2-11

2

While the PCI Slave is filling the PCI FIFO with write data, the PPC
Master can be moving previously posted write data onto the PPC60x bus.
In general, the PPC60x bus is running at a higher clock rate than the PCI
bus, which means the PCI bus can transfer data at a continuous
uninterrupted burst while the PPC60x bus transfers data in distributed
multiple bursts. The PHB write posting mechanism has been tuned to
create the most efficient possible data transfer between the two busses
during typical operation. It is conceivable that some non-typical conditions
could exist that would upset the default write post tuning of the PHB. For
example, if a PPC60x master is excessively using PPC60x bus bandwidth,
then the additional latency associated with obtaining ownership of the
PPC60x bus might cause the PCI Slave to stall if the PCI FIFO gets full. If
the PCI Slave is continuously stalling during write posted transactions,
then further tuning might be needed. This can be accomplished by
changing the WXFT (Write Any Fifo Threshold) field within the PSATTx
registers to recharacterize PHB write posting mechanism. The FIFO

Table 2-2. PPC Master Transaction Profiles and Starting Offsets

Start Offset
(i.e. from 0x00,0x20,0x40,etc.)

Write Profile Read Profile Notes

0x...00 -> 0x....07 Burst @ 0x00
Burst @ 0x20

....

Burst @ 0x00
Burst @ 0x20

....

Most efficient

0x....08 -> 0x....0f Single @ 0x08
Single @ 0x10
Single @ 0x18
Burst @ 0x20

....

Burst @ 0x00
Burst @ 0x20

....

Discard read beat 0x00

0x....10 -> 0x....17 Single @ 0x10
Single @ 0x18
Burst @ 0x20

....

Burst @ 0x00
Burst @ 0x20

....

Discard read beat 0x00
and 0x08

0x....18 -> 0x....1f Single @ 0x18
Burst @ 0x20

....

Single @ 0x18
Burst @ 0x20

....

2-12 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 threshold should be lowered to anticipate any additional latencies incurred
by the PPC Master on the PPC60x bus. Table 2-3 summarizes the PHB
available write posting options.

The PPC Master has an optional read ahead mode controlled by the RAEN
bit in the PSATTx registers that allows the PPC Master to prefetch data in
bursts and store it in the PCI FIFO. The contents of the PCI FIFO will then
be used to satisfy the data requirements for the remainder of the PCI read
transaction. The PHB read ahead mechanism has been tuned for maximum
efficiency during typical operation conditions. If excessive latencies are
encountered on the PPC60x bus, it may be necessary to tune the read ahead
mechanism to compensate for this. Additional tuning of the read-ahead
function is controlled by the RXFT/RMFT (Read Any FIFO
Threshold/Read Multiple FIFO Threshold) fields in the PSATTx registers.
These fields can be used to characterize when the PPC Master will
continue reading ahead with respect to the PCI FIFO threshold. The FIFO
threshold should be raised to anticipate any additional latencies incurred
by the PPC Master on the PPC60x bus. Table 2-4 summarizes the PHB
available read ahead options.

Table 2-3. PPC Master Write Posting Options

WXF
T

WPEN PPC60x Start PPC60x Continuation

xx 0 FIFO = 1 dword FIFO = 1 dword

00 1 FIFO >= 4 cache lines FIFO >= 1 cache line

01 1 FIFO >= 3 cache lines FIFO >= 1 cache line

10 1 FIFO >= 2 cache lines FIFO >= 1 cache line

11 1 FIFO >= 1 cache lines FIFO >= 1 cache line

Table 2-4. PPC Master Read Ahead Options

RXF
T

RMF
T

RAE
N

PCI
Command

Initial
Read Size

Continuation
Subsequent
Read Size

xx xx 0 Read 1 cache line PCI received
data and

FRAME_
asserted

1 cache line

Read Line

Functional Description

http://www.motorola.com/computer/literature 2-13

2

Upon completion of a prefetched read transaction, any residual read data
left within the PCI FIFO will be invalidated (discarded). The PHB does not
have a mechanism for snooping the PPC60x bus for transactions associated
with the prefetched read data within the PCI FIFO. Therefore, caution
should be exercised when using the prefetch option within coherent
memory space.

The PPC Master will never perform prefetch reads beyond the address
range mapped within the PCI Slave map decoders. As an example, assume
PHB has been programmed to respond to PCI address range $10000000
through $1001FFFF with an offset of $2000. The PPC Master will perform
its last read on the PPC60x bus at cache line address $3001FFFC or word
address $3001FFF8.

The PPC60x bus transfer types generated by the PPC Master depend on the
PCI command code and the INV/GBL bits in the PSATTx registers. The
GBL bit determines whether or not the GBL_ signal is asserted for all
portions of a transaction and is fully independent of the PCI command
code and INV bit. The following table shows the relationship between the
PCI command codes and the INV bit.

00 xx 1 Read 4 cache lines FIFO <= 0
cache lines

FIFO >= 4
cache linesRead Line

xx 00 x Read Multiple

01 xx 1 Read 4 cache lines FIFO <= 1
cache line

FIFO >= 4
cache linesRead Line

xx 01 x Read Multiple

10 xx 1 Read 4 cache lines FIFO <= 2
cache lines

FIFO >= 4
cache linesRead Line

xx 10 x Read Multiple

11 xx 1 Read 4 cache lines FIFO <= 3
cache lines

FIFO >= 4
cache linesRead Line

xx 11 x Read Multiple

Table 2-4. PPC Master Read Ahead Options (Continued)

RXF
T

RMF
T

RAE
N

PCI
Command

Initial
Read Size

Continuation
Subsequent
Read Size

2-14 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

The PPC master incorporates an optional operating mode called Bus Hog.
When Bus Hog is enabled, the PPC master will continually request the
PPC bus for the entire duration of each PCI transfer. When Bus Hog is not
enabled, the PPC master will structure its bus request actions according to
the requirements of the FIFO. The Bug Hog mode was primarily designed
to assist with system level debugging and is not intended for normal modes
of operation. It is a brute force method of guaranteeing that all PCI to
PPC60x transactions will be performed without any intervention by host
CPU transactions. Caution should be exercised when using this mode since
the over-generosity of bus ownership to the PPC master can be detrimental
to the host CPU’s performance. The Bus Hog mode can be controlled by
the XMBH bit within the GCSR. The default state for XMBH is disabled.

Table 2-5. PPC Master Transfer Types

PCI Command Code INV PPC Transfer Type PPC Transfer Size TT0-TT4

Memory Read

Memory Read Multiple

Memory Read Line

0 Read Burst/Single Beat 01010

Memory Read

Memory Read Multiple

Memory Read Line

1 Read With Intent to
Modify

Burst/Single Beat 01110

Memory Write

Memory Write and
Invalidate

x Write with Kill Burst 00110

Memory Write

Memory Write and
Invalidate

x Write with Flush Single Beat 00010

Functional Description

http://www.motorola.com/computer/literature 2-15

2PPC Arbiter

PHB has an internal PPC60x bus arbiter. The use of this arbiter is optional.
If the internal arbiter is disabled, then the PHB must be allowed to
participate in an externally implemented PPC60x arbitration mechanism.
The selection of either internal or external PPC arbitration mode is made
by sampling an RD line at the release of reset. Please see the section titled
PHB Hardware Configuration in this chapter for more information.

PHB has been designed to accommodate up to four PPC60x bus masters,
including itself (HAWK), two processors (CPU0/CPU1), and an external
PPC60x master (EXTL). EXTL can be an L2 cache, a second bridge chip,
etc. When the PPC Arbiter is disabled, PHB will generate an external
request and listen for an external grant for itself. It will also listen to the
other external grants to determine the PPC60x master identification field
(XID) within the GCSR. When the PPC Arbiter is enabled, PHB will
receive requests and issue grants for itself and for the other three bus
masters. The XID field will be determined by the PPC Arbiter.

The PPC60x arbitration signals and their functions are summarized in
Table 2-6.

Table 2-6. PPC Arbiter Pin Assignments

Pin Name
Pin

Type
Reset

Internal Arbiter External Arbiter

Direction Function Direction Function

XARB0 BiDir Tristate Output CPU0 Grant_ Input CPU0 Grant_

XARB1 BiDir Tristate Output CPU1 Grant_ Input CPU1 Grant_

XARB2 BiDir Tristate Output EXTL Grant_ Input EXTL Grant_

XARB3 BiDir Tristate Input CPU0 Request_ Output HAWK Request_

XARB4 Input - - Input CPU1 Request_ Input HAWK Grant_

XARB5 Input - - Input EXTL Request_ Input - -

2-16 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 While RST_ is asserted, XARB0 through XARB4 will be held in tri-state.
If the internal arbiter mode is selected, then XARB0 through XARB3 will
be driven to an active state no more than ten clock periods after PHB has
detected a rising edge on RST_. If the external arbiter mode has been
selected, then XARB4 will be driven to an active state no more than ten
clock periods after PHB has detected a rising edge on RST_.

The PPC Arbiter implements the following prioritization scheme:

❏ HAWK (Highest Priority)

❏ EXTL

❏ CPUx

❏ CPUy (Lowest Priority)

The PPC Arbiter is controlled by the XARB register within the PHB
PPC60x register group.

The PPC Arbiter supports two prioritization schemes. Both schemes affect
the priority of the CPU’s with respect to each other. The CPU fixed option
always places the priority of CPU0 over CPU1. The CPU rotating option
gives priority on a rotational basis between CPU0 and CPU1. In all cases
the priority of the CPUs remains fixed with respect to the priority of
HAWK and EXTL, with HAWK always having the highest priority of all.

The PPC Arbiter supports four parking modes. Parking is implemented
only on the CPUs and is not implemented on either HAWK or EXTL. The
parking options include parking on CPU0, parking on CPU1, parking on
the last CPU, or parking disabled.

There are various system level debug functions provided by the PPC
Arbiter. The PPC Arbiter has the optional ability to flatten the PPC60x bus
pipeline. Flattening can be imposed uniquely on single beat reads, single
beat writes, burst reads, and burst writes. It is possible to further qualify the
ability to flatten based on whether there is a switch in masters or whether
to flatten unconditionally for each transfer type. This is a debug function
only and is not intended for normal operation.

Functional Description

http://www.motorola.com/computer/literature 2-17

2PPC Parity

PHB will generate data parity whenever it is sourcing PPC data. This
happens during PPC Master write cycles and PPC Slave read cycles. Valid
data parity will be presented when DBB_ is asserted for PPC Master write
cycles. Valid data parity will be presented when TA_ is asserted for PPC
Slave read cycles.

PHB will check data parity whenever it is sinking PPC data. This happens
during PPC Master read cycles and PPC Slave write cycles. Data parity
will be considered valid anytime TA_ has been asserted. If a data parity
error is detected, then the PHB will latch address and attribute information
within the ESTAT, EADDR, and EATTR registers, and an interrupt or
machine check will be generated depending on the programming of the
ESTAT register.

PHB has a mechanism to purposely induce data parity errors for testability.
The DPE field within the ETEST register can be used to purposely inject
data parity errors on specific data parity lines. Data parity errors can only
be injected during cycles where PHB is sourcing PPC data.

PHB will generate address parity whenever it is sourcing a PPC address.
This will happen for all PPC Master transactions. Valid address parity will
be presented when ABB_ is being asserted.

PHB has a mechanism to purposely inject address parity errors for
testability. The APE field within the ETEST register can be used to
purposely inject address parity errors on specific address parity lines.
Address parity errors can only be injected during cycles where PHB is
sourcing a PPC address.

PHB does not have the ability to check for address parity errors.

2-18 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 PPC Bus Timer

The PPC Timer allows the current bus master to recover from a potential
lock-up condition caused when there is no response to a transfer request.
The time-out length of the bus timer is determined by the XBT field within
the GCSR.

The PPC Timer is designed to handle the case where an address tenure is
not closed out by the assertion of AACK_. The PPC Timer will not handle
the case where a data tenure is not closed out by the appropriate number of
TA_ assertions. The PPC Timer will start timing at the exact moment when
the PPC60x bus pipeline has gone flat. In other words, the current address
tenure is pending closure, all previous data tenures have completed, and
the current pending data tenure awaiting closer is logically associated with
the current address tenure.

The time-out function will be aborted if AACK_ is asserted anytime before
the time-out period has passed. If the time-out period reaches expiration,
then the PPC Timer will assert AACK_ to close the faulty address tenure.
If the transaction was an address only cycle, then no further action will be
taken. If the faulty transaction was a data transfer cycle, then the PPC
Timer will assert the appropriate number of TA_ signals to close the
pending data tenure. Error information related to the faulty transaction will
be latched within the ESTAT, EADDR, and EATTR registers, and an
interrupt or machine check will be generated depending on the
programming of the ESTAT register.

There are two exceptions that will dynamically disable the PPC Timer. If
the transaction is PCI bound, then the burden of closing out a transaction
is left to the PCI bus. Note that a transaction to the PPC60x registers is
considered to be PCI bound since the completion of these types of accesses
depends on the ability of the PCI bus to empty PCI bound write posted
data.

A second exception is the assertion of the XTOCLM_ signal. This is an
open collector (wired OR), bi-directional signal that is used by a bridge to
indicate the burden of timing a transaction has been passed on to another
bus domain. The PHB will assert this signal whenever it has determined
that a transaction is being timed by its own PCI bus. Any other bridge
devices listening to this signal will understand that the current pending
cycle should not be subject to a time-out period. During non-PCI bound
cycles, PPC Timer will abort the timing of the transaction any time it
detects XTOCLM_ has been asserted.

Functional Description

http://www.motorola.com/computer/literature 2-19

2PCI Bus Interface

The PCI Interface of the PHB is designed to connect directly to a PCI
Local Bus and supports Master and Target transactions within Memory
Space, I/O Space, and Configuration Space.

PCI Address Mapping

The PHB provides three resources to the PCI:

❏ Configuration registers mapped into PCI Configuration space

❏ PPC bus address space mapped into PCI Memory space

❏ MPIC control registers mapped into either PCI I/O space or PCI
Memory space

Configuration Registers

The PHB Configuration registers are mapped within PCI Configuration
space according to how the system connects Hawk’s DEVSEL_ pin. PHB
provides a configuration space that is fully compliant with the PCI Local
Bus Specification 2.1 definition for configuration space. There are two
base registers within the standard 64 byte header that are used to control
the mapping of MPIC. One register is dedicated to mapping MPIC into
PCI I/O space, and the other register is dedicated to mapping MPIC into
PCI Memory space. The mapping of PPC address space is handled by
device specific registers located above the 64 byte header. These control
registers support a mapping scheme that is functionally similar to the PCI-
to-PPC mapping scheme described in the section titled PPC Address
Mapping.

PPC Bus Address Space

The PHB will map PPC address space into PCI Memory space using four
programmable map decoders. The most significant 16 bits of the PCI
address is compared with the address range of each map decoder, and if the
address falls within the specified range, the access is passed on to the PPC
bus. An example of this is shown in Figure 2-4.

2-20 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

Figure 2-4. PCI to PPC Address Decoding

There are no limits imposed by the PHB on how large of an address space
a map decoder can represent. There is a lower limit of a minimum of 64KB
due to the resolution of the address compare logic.

For each map, there is an independent set of attributes. These attributes are
used to enable read accesses, enable write accesses, enable write posting,
and define the PPC bus transfer characteristics.

PCI Bus Address 8 0 8 0 1 2 3 4
0151631

PSADDx Register 7 0 8 0 9 0 0 0
0151631

>= <=andDecode is

Functional Description

http://www.motorola.com/computer/literature 2-21

2Each map decoder also includes a programmable 16-bit address offset. The
offset is added to the 16 most significant bits of the PCI address, and the
result is used as the PPC address. This offset allows devices to reside at any
PPC address, independent of the PCI address map. An example of this is
shown in Figure 2-5.

Figure 2-5. PCI to PPC Address Translation

All PHB address decoders are prioritized so that programming multiple
decoders to respond to the same address is not a problem. When the PCI
address falls into the range of more than one decoder, only the highest
priority one will respond. The decoders are prioritized as shown below.

Decoder Priority

PCI Slave 0 highest

PCI Slave 1

PCI Slave 2

PCI Slave 3 lowest

PCI Bus Address 8 0 8 0 1 2 3 4
0151631

PSOFFx Register 9 0 0 0
1631

+

PPC Bus Address 1 0 8 0 1 2 3 4
3116150

=

2-22 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 MPIC Control Registers

The MPIC control registers are located within either PCI Memory or PCI
I/O space using traditional PCI defined base registers within the predefined
64-byte header. Refer to the section titled Multi-Processor Interrupt
Controller (MPIC) for more information.

PCI Slave

The PCI Slave provides the control logic needed to interface the PCI bus
to the PCI FIFO. The PCI Slave can accept either 32-bit or 64-bit
transactions; however, it can only accept 32-bit addressing. There is no
limit to the length of the transfer that the PCI Slave can handle. During
posted write cycles, the PCI Slave will continue to accept write data until
the PCI FIFO is full. If the PCI FIFO is full, the PCI Slave will hold off the
master with wait states until there is more room in the FIFO. The PCI Slave
will not initiate a disconnect. If the write transaction is compelled, the PCI
Slave will hold off the master with wait states while each beat of data is
being transferred. The PCI Slave will issue TRDY_ only after the data
transfer has successfully completed on the PPC bus. If a read transaction
is being performed within an address space marked for prefetching, the
PCI Slave (in conjunction with the PPC Master) will attempt to read ahead
far enough on the PPC bus to allow for an uninterrupted burst transaction
on the PCI bus. Read transactions within address spaces marked for no
prefetching will receive a TRDY_ indication on the PCI bus only after one
burst read has successfully completed on the PPC bus. Each read on the
PPC bus will only be started after the previous read has been
acknowledged on the PCI bus and there is an indication that the PCI Master
wishes for more data to be transferred.

The following paragraphs identify some associations between the
operation of the PCI slave and the PCI 2.1 Local Bus Specification
requirements.

Functional Description

http://www.motorola.com/computer/literature 2-23

2Command Types:

Table 2-7 shows which types of PCI cycles the slave has been designed to
accept.

Addressing

The PCI Slave will accept any combination of byte enables during read or
write cycles. During write cycles, a discontinuity (i.e., a ‘hole’) in the byte
enables forces the PCI Slave to issue a disconnect. During all read cycles,
the PCI Slave returns an entire word of data regardless of the byte enables.
During I/O read cycles, the PCI Slave performs integrity checking of the
byte enables against the address being presented and assert SERR* in the
event there is an error.

Table 2-7. PCI Slave Response Command Types

Command Type Slave Response?

Interrupt Acknowledge No

Special Cycle No

I/O Read Yes

I/O Write Yes

Reserved No

Reserved No

Memory Read Yes

Memory Write Yes

Reserved No

Reserved No

Configuration Read Yes

Configuration Write Yes

Memory Read Multiple Yes

Dual Address Cycle No

Memory Read Line Yes

Memory Write and
Invalidate

Yes

2-24 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 The PCI Slave only honors the Linear Incrementing addressing mode. The
PCI Slave performs a disconnect with data if any other mode of addressing
is attempted.

Device Selection

The PCI slave will always respond valid decoded cycles as a medium
responder.

Target Initiated Termination

The PCI Slave normally strives to complete transactions without issuing
disconnects or retries. There are four exceptions where the PCI Slave
performs a disconnect:

❏ All burst configuration cycles are terminated with a disconnect after
one data beat has been transferred.

❏ All transactions that have a byte enable hole are disconnected.

❏ All transactions attempting to perform non-linear addressing mode
are terminated with a disconnect after one data beat is transferred.

❏ A transaction that crosses from a valid PHB decode space to an
invalid PHB decode space is disconnected. Note that this does not
include crossing contiguous multiple map decoder space, in which
case PHB does not issue a disconnect.

There are two exceptions where the PCI Slave performs a retry (disconnect
with no data transfer):

❏ While within a lock sequence, the PCI Slave retries all non-locking
masters.

❏ At the completion of a lock sequence between the times the two
locks are released on the PCI bus and the PPC bus. All accesses to
the PCI Slave, regardless of who is master is will be retried.

Delayed Transactions

The PCI Slave does not participate in the delayed transaction protocol.

Functional Description

http://www.motorola.com/computer/literature 2-25

2Fast Back-to-Back Transactions

The PCI Slave supports both of the fundamental target requirements for
fast back-to-back transactions. The PCI slave meets the first criteria of
being able to successfully track the state of the PCI bus without the
existence of an IDLE state between transactions. The second criteria
associate with signal turn-around timing is met by default since the PCI
Slave functions as a medium responder.

Latency

The PCI slave does not have any hardware mechanisms in place to
guarantee that the initial and subsequent target latency requirements are
met. Typically this is not a problem since the bandwidth of the PPC bus far
exceeds the bandwidth of the PCI bus.

Exclusive Access

The PCI Slave fully supports the PCI lock function. From the perspective
of the PPC bus, the PHB enables a lock to a single 32 byte cache line.
When a cache line has been locked, the PHB snoops all transactions on the
PPC bus. If a snoop hit happens, the PHB retries the transaction. Note that
the retry is ‘benign’ since there is no follow-on transaction after the retry
is asserted. The PHB contiues to snoop and retry all accesses to the locked
cache line until a valid ‘unlock’ is presented to the PHB and the last locked
cache line transaction is successfully executed.

Note that the PHB locks the cache line that encompasses the actual address
of the locked transaction. For example, a locked access to offset 0x28
creates a lock on the cache line starting at offset 0x20.

From the perspective of the PCI bus, the PCI Slave locks the entire
resource. Any attempt by a non-locking master to access any PCI resource
represented by the PHB results in the PCI Slave issuing a retry.

Parity

The PCI Slave supports address parity error detection, data parity
generation, and data parity error detection.

Cache Support

The PCI Slave does not participate in the PCI caching protocol.

2-26 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 PCI FIFO

A 64-bit by 16 entry FIFO (4 cache lines total) is used to hold data between
the PCI Slave and the PPC Master to ensure that optimum data throughput
is maintained. The same FIFO is used for both read and write transactions.
A 52-bit by 4 entry FIFO is used to hold command information being
passed between the PCI Slave and the PPC Master. If write posting is
enabled, then the maximum number of transactions that may be posted is
limited by the abilities of either the data FIFO or the command FIFO. For
example, one burst transaction, 16 double words long, would make the
data FIFO the limiting factor for write posting. Four single beat
transactions would make the command FIFO be the limiting factor. If
either limit is exceeded then any pending PCI transactions are delayed
(TRDY_ is not asserted) until the PPC Master has completed a portion of
the previously posted transactions and created some room within the
command and/or data FIFOs.

PCI Master

The PCI Master, in conjunction with the capabilities of the PPC Slave,
attempts to move data in either single beat or four-beat (burst) transactions.
The PCI Master supports 32-bit and 64-bit transactions in the following
manner:

❏ All PPC60x single beat transactions, regardless of the byte count,
are subdivided into one or two 32-bit transfers, depending on the
alignment and the size of the transaction. This includes single beat
8-byte transactions.

❏ All PPC60x burst transactions are transferred in 64-bit mode if the
PCI bus has 64-bit mode enabled. If at any time during the
transaction the PCI target indicates it can not support 64-bit mode,
the PCI Master continues to transfer the remaining data within that
transaction in 32-bit mode.

The PCI Master can support Critical Word First (CWF) burst transfers.
The PCI Master divides this transaction into two parts. The first part starts
on the address presented with the CWF transfer request and continues up
to the end of the current cache line. The second transfer starts at the
beginning of the associated cache line and works its way up to (but not
including) the word addressed by the CWF request.

Functional Description

http://www.motorola.com/computer/literature 2-27

2It should be noted that even though the PCI Master can support burst
transactions, a majority of the transaction types handled are single-beat
transfers. Typically PCI space is not configured as cache-able, therefore
burst transactions to PCI space would not naturally occur. It must be
supported since it is conceivable that bursting could happen. For example,
nothing prevents the processor from loading up a cache line with PCI write
data and manually flushing the cache line.

The following paragraphs identify some associations between the
operation of the PCI Master and the PCI 2.1 Local Bus Specification
requirements.

Command Types

The PCI Command Codes generated by the PCI Master depend on the type
of transaction being performed on the PPC bus. Please refer to the section
on the PPC Slave earlier in this chapter for a further description of PPC bus
read and PPC bus write. Table 2-8 summarizes the command types
supported and how they are generated.

Table 2-8. PCI Master Command Codes

Entity Addressed PPC
Transfer Type

TBST* MEM C/BE PCI Command

PIACK Read x x 0000 Interrupt Acknowledge

CONADD/CONDAT Write x x 0001 Special Cycle

PPC Mapped PCI Space Read x 0 0010 I/O Read

Write x 0 0011 I/O Write

-- Unsupported -- 0100 Reserved

-- Unsupported -- 0101 Reserved

PPC Mapped PCI Space Read 1 1 0110 Memory Read

Write x 1 0111 Memory Write

-- Unsupported -- 1000 Reserved

-- Unsupported -- 1001 Reserved

CONADD/CONDAT Read x x 1010 Configuration Read

CONADD/CONDAT Write x x 1011 Configuration Write

-- Unsupported -- 1100 Memory Read Multiple

2-28 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

Addressing

The PCI Master generates all memory transactions using the Linear
Incrementing addressing mode.

Combining, Merging, and Collapsing

The PCI Master does not participate in any of these protocols.

Master Initiated Termination

The PCI Master can handle any defined method of target retry, target
disconnect, or target abort. If the target responds with a retry, the PCI
Master waits for the required two clock periods and attempts the
transaction again. This process continues indefinitely until the transaction
is completed, the transaction is aborted by the target, or if the transaction
is aborted due to a PHB detected bridge lock. The same happens if the
target responds with a disconnect and there is still data to be transferred.

If the PCI Master detects a target abort during a read, any untransferred
read data is filled with ones. If the PCI Master detects a target abort during
a write, any untransferred portions of data will be dropped. The same rule
applies if the PCI Master generates a Master Abort cycle.

Arbitration

The PCI Master can support parking on the PCI bus. There are two cases
where the PCI Master continuously asserts its request.

❏ If the PCI Master starts a transaction that is going to take more than
one assertion of FRAME_, the PCI Master continuously asserts its
request until the transaction has completed. For example, the PCI
Master continuously asserts requests during the first part of a two
part critical word first transaction.

❏ If at least one command is pending within the PPC FIFO.

-- Unsupported -- 1101 Dual Address Cycle

PPC Mapped PCI Space Read 0 1 1110 Memory Read Line

-- Unsupported -- 1111 Memory Write and
Invalidate

Table 2-8. PCI Master Command Codes (Continued)

Entity Addressed PPC
Transfer Type

TBST* MEM C/BE PCI Command

Functional Description

http://www.motorola.com/computer/literature 2-29

2The PCI Master always removes its request when it receives a disconnect
or a retry.

There is a case where the PCI Master could assert a request but not actually
perform a bus cycle. This may happen if the PCI Master is placed in the
speculative request mode. Refer to the section titled PCI/PPC Contention
Handling for more information. In no case will the PCI Master assert its
request for more than 16 clocks without starting a transaction.

Fast Back-to-Back Transactions

The PCI Master does not generate fast back-to-back transactions.

Arbitration Latency

Because a bulk of the transactions are limited to single-beat transfers on
PCI, the PCI Master does not implement a Master Latency Timer.

Exclusive Access

The PCI Master is not able to initiate exclusive access transactions.

Address/Data Stepping

The PCI Master does not participate in the Address/Data Stepping
protocol.

Parity

The PCI Master supports address parity generation, data parity generation,
and data parity error detection.

Cache Support

The PCI Master does not participate in the PCI caching protocol.

Generating PCI Cycles

There are four basic types of bus cycles that can be generated on the PCI
bus:

❏ Memory and I/O

❏ Configuration

❏ Special Cycle

❏ Interrupt Acknowledge

2-30 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Generating PCI Memory and I/O Cycles

Each programmable slave may be configured to generate PCI I/O or
memory accesses through the MEM and IOM fields in its XSATTx
register as shown below.

:

If the MEM bit is set, the PHB performs Memory addressing on the PCI
bus. The PHB takes the PPC bus address, applies the offset specified in the
XSOFFx register, and maps the result directly to the PCI bus.

The IBM CHRP specification describes two approaches for handling PCI
I/O addressing: contiguous or spread address modes. When the MEM bit
is cleared, the IOM bit is used to select between these two modes whenever
a PCI I/O cycle is to be performed.

The PHB performs contiguous I/O addressing when the MEM bit is clear
and the IOM bit is clear. The PHB takes the PPC address, apply the offset
specified in the XSOFFx register, and map the result directly to PCI.

The PHB performs spread I/O addressing when the MEM bit is clear and
the IOM bit is set. The PHB takes the PPC address, applies the offset
specified in the MSOFFx register, and maps the result to PCI as shown in
Figure 2-6.

MEM IOM PCI Cycle Type

1 x Memory

0 0 Contiguous I/O

0 1 Spread I/O

Functional Description

http://www.motorola.com/computer/literature 2-31

2
.

Figure 2-6. PCI Spread I/O Address Translation

Spread I/O addressing allows each PCI device’s I/O registers to reside on
a different PPC memory page, so device drivers can be protected from
each other using memory page protection.

All I/O accesses must be performed within natural word boundaries. Any
I/O access that is not contained within a natural word boundary results in
unpredictable operation. For example, an I/O transfer of four bytes starting
at address $80000010 is considered a valid transfer. An I/O transfer of four
bytes starting at address $80000011 is considered an invalid transfer since
it crosses the natural word boundary at address $80000013/$80000014.

Generating PCI Configuration Cycles

The PHB uses configuration Mechanism #1 as defined in the PCI Local
Bus Specification 2.1 to generate configuration cycles. Please refer to this
specification for a complete description of this function.

Configuration Mechanism #1 uses an address register/data register format.
Performing a configuration access is a two step process. The first step is to
place the address of the configuration cycle within the
CONFIG_ADDRESS register. Note that this action does not generate any
cycles on the PCI bus.

1915 9702

PPC Address + Offset
31 12 11 5 4 0

31 0

PCI Address

25 24

0 0 0 0 0 0 00 0 0 0 0 0 0

5 4

2-32 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 The second step is to either read or write configuration data into the
CONFIG_DATA register. If the CONFIG_ADDRESS register is set up
correctly, the PHB will pass this access on to the PCI bus as a configuration
cycle.

The addresses of the CONFIG_ADDRESS and CONFIG_DATA registers
are actually embedded within PCI I/O space. If the CONFIG_ADDRESS
register has been set incorrectly or the access to either the
CONFIG_ADDRESS or CONFIG_DATA register is not 1,2, or 4 bytes
wide, the PHB will pass the access on to PCI as a normal I/O Space
transfer.

The CONFIG_ADDRESS register is located at offset $CF8 from the
bottom of PCI I/O space. The CONFIG_DATA register is located at offset
$CFC from the bottom of PCI I/O space. The PHB address decode logic
has been designed such that XSADD3 and XSOFF3 must be used for
mapping to PCI Configuration (consequently I/O) space. The
XSADD3/XSOFF3 register group is initialized at reset to allow PCI I/O
access starting at address $80000000. The powerup location (Little Endian
disabled) of the CONFIG_ADDRESS register is $80000CF8, and the
CONFIG_DATA register is located at $80000CFC.

The CONFIG_ADDRESS register must be prefilled with four fields: the
Register Number, the Function Number, the Device Number, and the Bus
Number.

The Register Number and the Function Number get passed along to the
PCI bus as a portion of the lower address bits.

When performing a configuration cycle, the PHB uses the upper 20
address bits as IDSEL lines. During the address phase of a configuration
cycle, only one of the upper address bits will be set.

Functional Description

http://www.motorola.com/computer/literature 2-33

2The device that has its IDSEL connected to the address bit being asserted
is selected for a configuration cycle. The PHB decodes the Device Number
to determine which of the upper address lines to assert. The decoding of
the five-bit Device Number is show as follows:

The Bus Number determines which bus is the target for the configuration
read cycle. The PHB will always host PCI bus #0. Accesses that are to be
performed on the PCI bus connected to the PHB must have zero
programmed into the Bus Number. If the configuration access is targeted
for another PCI bus, then that bus number should be programmed into the
Bus Number field. The PHB will detect a non-zero field and convert the
transaction to a Type 1 Configuration cycle.

Generating PCI Special Cycles

The PHB supports the method stated in PCI Local Bus Specification 2.1
using Configuration Mechanism #1 to generate special cycles. To prime
the PHB for a special cycle, the host processor must write a 32 bit value to
the CONFIG_ADDRESS register. The contents of the write are defined
later in this chapter under the CONFIG_ADDRESS register definition.
After the write to CONFIG_ADDRESS has been accomplished, the next
write to the CONFIG_DATA register causes the PHB to generate a special
cycle on the PCI bus. The write data is driven onto AD[31:0] during the
special cycle’s data phase.

Device Number Address Bit

00000 AD31

00001 - 01010 All Zeros

01011 AD11

01100 AD12

(etc.) (etc.)

11101 AD29

11110 AD30

11111 All Zeros

2-34 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Generating PCI Interrupt Acknowledge Cycles

Performing a read from the PIACK register will initiate a single PCI
Interrupt Acknowledge cycle. Any single byte or combination of bytes
may be read from, and the actual byte enable pattern used during the read
will be passed on to the PCI bus. Upon completion of the PCI interrupt
acknowledge cycle, the PHB will present the resulting vector information
obtained from the PCI bus as read data.

PCI Arbiter

The Hawk’s internal PCI arbiter supports up to 8 PCI masters. This
includes Hawk and 7 other external PCI masters. The arbiter can be
configured to be enabled or disabled at reset time by strapping the rd[9] bit
either high for enabled or low for disabled. Table 2-9 describes the pins and
its function for both modes.

Table 2-9. PCI Arbiter Pin Description

Pin Name Pin
Type

Reset Internal Arbiter External Arbiter

Direction Function Direction Function

PARBI0 Input - - Input ext req0_ input HAWK gnt_

PARBI1 Input - - Input ext req1_ Input NA

PARBI2 Input - - Input ext req2_ Input NA

PARBI3 Input - - Input ext_req3_ Input NA

PARBI4 Input - - Input ext_req4_ Input NA

PARBI5 Input - - Input ext req5_ Input NA

PARBI6 Input - - Input ext req6_ Input NA

PARBO0 Output Tristate Output ext gnt0_ Output HAWK req_

PARBO1 Output Tristate Output ext gnt1_ Output NA

PARBO2 Output Tristate Output ext gnt2_ Output NA

PARBO3 Output Tristate Output ext gnt3_ Output NA

PARBO4 Output Tristate Output ext gnt4_ Output NA

PARBO5 Output Tristate Output ext gnt5_ Output NA

PARBO6 Output Tristate Output ext gnt6_ Output NA

Functional Description

http://www.motorola.com/computer/literature 2-35

2The Hawk’s PCI arbiter has various programming options. It supports 3
different priority schemes: fixed, round robin, and mixed mode. It also
allows various levels of reprioritization programming options within fixed
and mixed modes. Parking can be programmed to any of the requestors, the
last requestor or none. A special bit is added to hold grant asserted for an
agent that initiates a lock cycle. Once a lock cycle is detected, the grant is
held asserted until the PCI LOCK_ pin is released. This feature works only
when the “POL” bit is enabled.

The priority scheme can be programmed by writing the “PRI” field in the
PCI Arbiter control register. The default setting for priority scheme is fixed
mode. The Fixed mode holds each requestor at a fixed level in its
hierarchy. The levels of priority for each requestor are programmable by
writing the “HEIR” field in the PCI Arbiter control register. Table 2-10
describes all available settings for the “HEIR” field in fixed mode.

Notes 1. “000” is the default setting in fixed mode.

2. The HEIR setting only covers a small subset of all possible
combinations. It is the responsibility of the system designer
to connect the request/grant pair in a manner most beneficial
to their design goals.

Table 2-10. Fixed Mode Priority Level Setting

HEIR
Setting

Priority Levels

Highest Lowest

000 PARB6 PARB5 PARB4 PARB3 PARB2 PARB1 PARB0 HAWK

001 HAWK PARB6 PARB5 PARB4 PARB3 PARB2 PARB1 PARB0

010 PARB0 HAWK PARB6 PARB5 PARB4 PARB3 PARB2 PARB1

011 PARB1 PARB0 HAWK PARB6 PARB5 PARB4 PARB3 PARB2

100 PARB2 PARB1 PARB0 HAWK PARB6 PARB5 PARB4 PARB3

101 PARB3 PARB2 PARB1 PARB0 HAWK PARB6 PARB5 PARB4

110 PARB4 PARB3 PARB2 PARB1 PARB0 HAWK PARB6 PARB5

111 PARB5 PARB4 PARB3 PARB2 PARB1 PARB0 HAWK PARB6

2-36 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 When the arbiter is programmed for round robin priority mode, the arbiter
maintains fairness and provides equal opportunity to the requestors by
rotating its grants. The contents in “HEIR” field are “don’t cares” when
operated in this mode.

When the arbiter is programmed for mixed mode, the 8 requestors are
divided up into 4 groups and each groups is occupied by 2 requestors.
PARB6 and PARB5 are defined in group1; PARB4 and PARB3 are
defined in group 2; PARB2 and PARB1 are defined in group 3; PARB0
and HAWK are defined in group 4. Arbitration is set for round robin mode
between the 2 requestors within each group and set for fixed mode between
the 4 groups. The levels of priority for each group are programmable by
writing the “HEIR” field in the PCI Arbiter control register. Table 2-11
describes all available setting for the “HEIR” field in mixed mode.

Table 2-11. Mixed Mode Priority Level Setting

HEIR
Setting

PRIORITY Levels

Highest Lowest

000 group 1 group 2 group 3 group 4

PARB 6 & 5 PARB 4 & 3 PARB 2 & 1 PARB 0 &
HAWK

001 group 4 group 1 group 2 group 3

PARB 0 &
HAWK

PARB 6 & 5 PARB 4 & 3 PARB 2 & 1

010 group 3 group 4 group 1 group 2

PARB 2 & 1 PARB 0 &
HAWK

PARB 6 & 5 PARB 4 & 3

011 group 2 group 3 group 4 group 1

PARB 4 & 3 PARB 2 & 1 PARB 0 &
HAWK

PARB 6 & 5

Functional Description

http://www.motorola.com/computer/literature 2-37

2Notes 1. “000” is the default setting in mixed mode.

2. The HEIR setting only covers a small subset of all possible
combinations and the requestors within each group is fixed
and cannot be interchanged with other groups. It is the
responsibility of the system designer to connect the
request/grant pair in a manner most beneficial to their design
goals.

3. All other combinations in the HEIR setting not specified in the
table are invalid and should not be used.

Arbitration parking is programmable by writing to the “PRK” field of the
PCI arbiter control register. Parking can be programmed for any of the
requestors, last requestor or none. The default setting for parking is “Park
on HAWK”. Table 2-12 describes all available settings for the “PRK”
field.

Table 2-12. Arbitration Setting

PRK setting Function

0000 Park on last requestor

0001 Park on PARB6

0010 Park on PARB5

0011 Park on PARB4

0100 Park on PARB3

0101 Park on PARB2

0110 Park on PARB1

0111 Park on PARB0

1000 Park on HAWK

1111 Parking disabled

2-38 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Notes 1. “1000” is the default setting.

2. Parking disabled is a test mode only and should not be
used, since no one will drive the PCI bus when in an idle
state.

3. All other combinations in the PRK setting not specified in the
table are invalid and should not be used.

A special function is added to the PCI arbiter to hold the grant asserted
through a lock cycle. When the “POL” bit in the PCI arbiter control
register is set, the grant associated with the agent initiating the lock cycle
will be held asserted until the lock cycle is complete. If this bit is clear, the
arbiter does not distinguish between lock and non-lock cycle.

Endian Conversion

The PHB supports both Big- and Little-Endian data formats. Since the PCI
bus is inherently Little-Endian, conversion is necessary if all PPC devices
are configured for Big-Endian operation. The PHB may be programmed to
perform the Endian conversion described below.

When PPC Devices are Big-Endian

When all PPC devices are operating in Big-Endian mode, all data to/from
the PCI bus must be swapped such that the PCI bus looks big endian from
the PPC bus’s perspective. This association is true regardless of whether
the transaction originates on the PCI bus or the PPC bus. This is shown in
Figure 2-7.

Functional Description

http://www.motorola.com/computer/literature 2-39

2
.

Figure 2-7. Big-to-Little-Endian Data Swap

When PPC Devices are Little Endian

When all PPC devices are operating in Little-Endian mode, the originating
address is modified to remove the exclusive-ORing applied by PPC60x
processors. Note that no data swapping is performed.

1916 9610

D
H

07
-0

0

D
H

15
-0

8

D
H

23
-1

6

D
H

31
-2

4

D
L0

7-
00

D
L1

5-
08

D
L2

3-
16

D
L3

1-
24

D0 D1 D2 D3 D4 D5 D6 D7

D7 D6 D5 D4 D3 D2 D1 D0

D0 D1 D2 D3 D4 D5 D6 D7

A
D

63
-5

6

A
D

55
-4

8

A
D

47
-4

0

A
D

39
-3

2

A
D

31
-2

4

A
D

23
-1

6

A
D

15
-0

8

A
D

07
-0

0

D
H

07
-0

0

D
H

15
-0

8

D
H

23
-1

6

D
H

31
-2

4

D
L0

7-
00

D
L1

5-
08

D
L2

3-
16

D
L3

1-
24

D7 D6 D5 D4

D3 D2 D1 D0

A
D

31
-2

4

A
D

23
-1

6

A
D

15
-0

8

A
D

07
-0

0

PPC Bus

64-bit PCI

PPC Bus

32-bit PCI

2-40 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Address modification happens to the originating address regardless of
whether the transaction originates from the PCI bus or the PPC bus. The
three low order address bits are exclusive-ORed with a three-bit value that
depends on the length of the operand, as shown in Table 2-13.

Note The only legal data lengths supported in Little-Endian mode
are 1, 2, 4, or 8-byte aligned transfers.

Since this method has some difficulties dealing with unaligned PCI-
originated transfers, the PPC master of the PHB will break up all unaligned
PCI transfers into multiple aligned transfers into multiple aligned transfers
on the PPC bus.

PHB Registers

The PHB registers are not sensitive to changes in Big-Endian and Little-
Endian mode. With respect to the PPC bus (but not always the address
internal to the processor), the PPC registers are always represented in Big-
Endian mode. This means that the processor’s internal view of the PPC
registers appears different depending on which mode the processor
operates.

With respect to the PCI bus, the configuration registers are always
represented in Little-Endian mode.

Table 2-13. Address Modification for Little Endian Transfers

Data
Length
 (bytes)

Address
Modification

1 XOR with 111

2 XOR with 110

4 XOR with 100

8 no change

Functional Description

http://www.motorola.com/computer/literature 2-41

2The CONFIG_ADDRESS and CONFIG_DATA registers are actually
represented in PCI space to the processor and are subject to the Endian
functions. For example, the powerup location of the CONFIG_ADDRESS
register with respect to the PPC bus is $80000cf8 when the PHB is in Big-
Endian mode. When the PHB is switched to Little-Endian mode, the
CONFIG_ADDRESS register with respect to the PPC bus is $80000cfc.
Note that in both cases the address generated internal to the processor will
be $80000cf8.

The contents of the CONFIG_ADDRESS register are not subject to the
Endian function.

The data associated with PIACK accesses is subject to the Endian
swapping function. The address of a PIACK cycle is undefined; therefore,
address modification during Little-Endian mode is not an issue.

Error Handling

The PHB is capable of detecting and reporting the following errors to one
or more PPC masters:

❏ XBTO - PPC address bus time-out

❏ XDPE - PPC data parity error

❏ PSMA - PCI master signalled master abort

❏ PRTA - PCI master received target abort

❏ PPER - PCI parity error

❏ PSER - PCI system error

Each of these error conditions will cause an error status bit to be set in the
PPC Error Status Register (ESTAT). If a second error is detected while any
of the error bits is set, the OVFL bit is asserted, but none of the error bits
are changed. Each bit in the ESTAT may be cleared by writing a 1 to it;
writing a 0 to it has no effect. New error bits may be set only when all
previous error bits have been cleared.

2-42 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 When any bit in the ESTAT is set, the PHB will attempt to latch as much
information as possible about the error in the PPC Error Address
(EADDR) and Attribute Registers (EATTR). Information is saved as
follows:

Each ESTAT error bit may be programmed to generate a machine check
and/or a standard interrupt. The error response is programmed through the
PPC Error Enable Register (EENAB) on a source by source basis. When a
machine check is enabled, either the XID field in the EATTR Register or
the DFLT bit in the EENAB Register determines the master to which the
machine check is directed. For errors in which the master who originated
the transaction can be determined, the XID field is used. For errors not
associated with a particular PPC master, or associated with masters other
than processor 0,1 or 2, the DFLT bit is used. One example of an error
condition which cannot be associated with a particular PPC master would
be a PCI system error.

Watchdog Timers

PHB features two watchdog timers called Watchdog Timer 1 (WDT1) and
Watchdog Timer 2 (WDT2). Although both timers are functionally
equivalent, each timer operates completely independent of each other.
WDT1 and WDT2 are initialized at reset to a count value of 8 seconds and
16 seconds respectively. The timers are designed to be reloaded by
software at any time.

Error
Status

Error Address and
Attributes

XBTO From PPC bus

XDPE From PPC bus

PRTA From PCI bus

PSMA From PCI bus

PPER Invalid

PSER Invalid

Functional Description

http://www.motorola.com/computer/literature 2-43

2When not being loaded, the timer will continuously decrement itself until
either reloaded by software or a count of zero is reached. If a timer reaches
a count of zero, an output signal will be asserted and the count will remain
at zero until reloaded by software or PHB reset is asserted. External logic
can use the output signals of the timers to generate interrupts, machine
checks, etc.

Each timer is composed of a prescaler and a counter. The prescaler determines
the resolution of the timer, and is programmable to any binary value between
1 microseconds and 32,768 microsecons. The counter counts in the units
provided by the prescaler. For example, the watchdog timer would reach a
count of zero within 24 microseconds if the prescaler was programmed to 2
microseconds and the counter was programmed to 12.

The watchdog timers are controlled by registers mapped within the PPC
control register space. Each timer has a WDTxCNTL register and a
WDTxSTAT register. The WDTxCNTL register can be used to start or
stop the timer, write a new reload value into the timer, or cause the timer
to initialize itself to a previously written reload value. The WDTxSTAT
register is used to read the instantaneous count value of the watchdog
timer.

Programming of the Watchdog Timers is performed through the
WDTxCNTL register and is a two step process.

❏ Step 1 is to ‘arm’ the WDTxCNTL register by writing
PATTERN_1 into the KEY field. Only the KEY byte lane may be
selected during this process. The WDTxCNTL register will not arm
itself if any of the other byte lanes are selected or the KEY field is
written with any other value than PATTERN_1. The operation of
the timer itself remains unaffected by this write.

❏ Step 2 is to write the new programming information to the
WDTxCNTL register. The KEY field byte lane must be selected
and must be written with PATTERN_2 for the write to take affect.
The effects on the WDTxCNTL register depend on the byte lanes
that are written to during step 2 and are shown in Table 2-14.

2-44 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

The WDTxCNTL register will always become unarmed after the second
write regardless of byte lane selection. Reads may be performed at any
time from the WDTxCNTL register and will not affect the write arming
sequence.

PCI/PPC Contention Handling

The PHB has a mechanism that detects when there is a possible resource
contention problem (i.e. deadlock) as a result of overlapping PPC and PCI
initiated transactions. The PPC Slave, PCI Slave, and PCI Master
functions contain the logic needed to implement this feature.

Table 2-14. WDTxCNTL Programming

Byte Lane Selection Results

KEY ENAB
/RES

RELOAD WDT WDTxCNTL Register

0:7 8:15 16:23 24:31 Prescaler/
Enable

Counter RES/ENAB RELOAD

No x x x No Change No Change No Change No Change

Yes No x x Update
from

RES/ENAB

Update
from

RELOAD

No Change No Change

Yes Yes No x Update
from data

bus

Update
from

RELOAD

Update
from data

bus

No Change

Yes Yes x No Update
from data

bus

Update
from

RELOAD

Update
from data

bus

No Change

Yes Yes Yes Yes Update
from data

bus

Update
from data

bus

Update
from data

bus

Update
from

data bus

Functional Description

http://www.motorola.com/computer/literature 2-45

2The PCI Slave and the PPC Slave contribute to this mechanism in the
following manner. Each slave function will issue a stall signal to the PCI
Master anytime it is currently processing a transaction that must have
control of the opposing bus before the transaction can be completed. The
events that activate this signal are:

❏ Read cycle with no read data in the FIFO

❏ Non-posted write cycle

❏ Posted write cycle and FIFO full

A simultaneous indication of a stall from both slaves means that a bridge
lock has happened. To resolve this, one of the slaves must back out of its
currently pending transaction. This will allow the other stalled slave to
proceed with its transaction. When the PCI Master detects bridge lock, it
will always signal the PPC Slave to take actions to resolve the bridge lock.

If the PPC bus is currently supporting a read cycle of any type, the PPC
Slave will terminate the pending cycle with a retry. Note that if the read
cycle is across a mod-4 address boundary (i.e. from address 0x...02, 3
bytes), it is possible that a portion of the read could have been completed
before the stall condition was detected. The previously read data will be
discarded and the current transaction will be retried.

If the PPC bus is currently supporting a posted write transaction, the
transaction will be allowed to complete since this type of transaction is
guaranteed completion. If the PPC bus is currently supporting a non-
posted write transaction, the transaction will be terminated with a retry.
Note that a mod-4 non-posted write transaction could be interrupted
between write cycles, and thereby results in a partially completed write
cycle. It is recommended that write cycles to write-sensitive, non-posted
locations be performed on mod-4 address boundaries.

The PCI Master must make the determination to perform the resolution
function since it must make some decisions on possibly removing a
currently pending command from the PPC FIFO.

There are some performance issues related to bridge lock resolution. PHB
offers two mechanism that allow fine tuning of the bridge lock resolution
function.

2-46 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Programmable Lock Resolution

Consider the scenario where the PPC Slave is hosting a read cycle and the
PCI Slave is hosting a posted write transaction. If both transactions happen
at roughly the same time, then the PPC Slave will hold off its transaction
until the PCI Slave can fill the PCI FIFO with write posted data. Once this
happens, both slaves will be stalled and a bridge lock resolution cycle will
happen. The effect of this was to make the PPC Slave waste PPC bus
bandwidth. In addition, a full PCI FIFO will cause the PCI Slave to start
issuing wait states to the PCI bus.

From the perspective of the PCI bus, a better solution would be to select a
PCI FIFO threshold that will allow the bridge lock resolution cycle to
happen early enough to keep the PCI FIFO from getting filled. A similar
case exists with regard to PCI read cycles. Having the bridge lock
resolution associated with a particular PCI FIFO threshold would allow the
PPC Master to get an early enough start at prefetching read data to keep the
PCI Slave from starving for read data.

From the perspective of the PPC bus, a selective FIFO threshold will make
the PPC Slave release the PPC bus at an earlier time thereby reducing
wasted PPC bus bandwidth. PHB offers an option to have the PPC Slave
remove a stalled transaction immediately upon detecting any PCI Slave
activity. This option would help in the case where distributing PPC60x bus
bandwidth between multiple masters is of the utmost importance.

The PHB is tuned to provide the most efficient solution for bridge lock
resolution under normal operating conditions. If further fine tuning is
desired, the WLRT/RLRT (Write Lock Resolution Threshold/Read Lock
Resolution Threshold) fields within the HCSR can be adjusted
accordingly. Note that the FIFO full option exists mainly to remain
architecturally backwards compatible with previous bridge designs.

Speculative PCI Request

There is a case where the processor could get starved for PCI read data
while the PCI Slave is hosting multiple PPC60x bound write cycles. While
attempting to perform a read from PCI space, the processor would
continually get retried as a result of bridge lock resolution.

Functional Description

http://www.motorola.com/computer/literature 2-47

2Between PCI writes, the PPC Master will be taking PPC60x bus bandwidth
trying to empty write posted data, which will further hamper the ability of
the processor to complete its read transaction.

PHB offers an optional speculative PCI request mode that helps the
processor complete read cycles from PCI space. If a bridge lock resolution
cycle happens when the PPC Slave is hosting a compelled cycle, the PCI
Master will speculatively assert a request on the PCI bus. Sometime later
when the processor comes back and retries the compelled cycle, the results
of the PCI Master holding will increase the chance of the processor
successfully completing its cycle.

PCI speculative requesting will only be effective if the PCI arbiter will at
least some times consider the PHB to be a higher priority master than the
master performing the PPC60x bound write cycles. The PCI Master obeys
the PCI specification for benign requests and will unconditionally remove
a speculative request after 16 clocks.

The PHB considers the speculative PCI request mode to be the default
mode of operation. If this is not desired, then the speculative PCI request
mode can be disable by changing the SPRQ bit in the HCSR.

Transaction Ordering

All transactions will be completed on the destination bus in the same order
that they are completed on the originating bus. A read or a compelled write
transaction will force all previously issued write posted transactions to be
flushed from the FIFO. All write posted transfers will be completed before
a read or compelled write begins to ensure that all transfers are completed
in the order issued.

All PCI Configuration cycles intended for internal PHB registers will also
be delayed if PHB is busy so that control bits which may affect write
postings do not change until all write posted transactions have completed.
For the same reason all PPC60x write posted transfers will also be
completed before any access to the PHB PPC registers begins.

The PCI Local Bus Specification 2.1 states that posted write buffers in
both directions must be flushed before completing a read in either
direction.

2-48 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 PHB supports this by providing two optional FIFO flushing options. The
XFBR (PPC60x Flush Before Read) bit within the GCSR register controls
the flushing of PCI write posted data when performing PPC-originated
read transactions. The PFBR (PCI Flush Before Read) bit within the
GCSR register controls the flushing of PPC write posted data when
performing PCI-originated read transactions. The PFBR and XFBR
functions are completely independent of each other; however, both
functions must be enabled to guarantee full compliance with PCI Local
Bus Specification 2.1.

When the XFBR bit is set, the PHB will handle read transactions
originating from the PPC bus in the following manner:

❏ Write posted transactions originating from the processor bus are
flushed by the nature of the FIFO architecture. The PHB will hold
the processor with wait states until the PCI bound FIFO is empty.

❏ Write posted transactions originated from the PCI bus are flushed
whenever the PCI slave has accepted a write-posted transaction and
the transaction has not completed on the PPC bus.

The PPC Slave address decode logic settles out several clocks after the
assertion of TS_, at which time the PPC Slave can determine the
transaction type. If it is a read and XFBR is enabled, the PPC Slave will
look at the ps_fbrabt signal. If this signal is active, the PPC Slave will retry
the processor.

When the PFBR bit is set, PHB will handle read transactions originating
from the PCI bus in the following manner:

❏ Write posted transactions originating from the PCI bus are flushed
by the nature of the FIFO architecture. The PHB will hold the PCI
Master with wait states until the PPC bound FIFO is empty.

❏ Write posted transactions originated from the PPC60x bus are
flushed in the following manner. The PPC Slave will set a signal
called xs_fbrabt anytime it has committed to performing a posted
write transaction. This signal will remain asserted until the PCI
bound FIFO count has reached zero.

Functional Description

http://www.motorola.com/computer/literature 2-49

2The PCI Slave decode logic settles out several clocks after the assertion of
FRAME_, at which time the PCI Slave can determine the transaction type.
If it is a read and PFBR is enabled, the PCI Slave will look at the xs_fbrabt
signal. If this signal is active, the PCI Slave will retry the PCI Master.

PHB Hardware Configuration

Hawk has the ability to perform custom hardware configuration to
accommodate different system requirements. The PHB has several
functions that may be optionally enabled or disabled using passive
hardware external to Hawk. The selection process occurs at the first rising
edge of CLK after RST_ has been released. All of the sampled pins are
cascaded with several layers of registers to eliminate problems with hold
time.

Table 2-15 summarizes the hardware configuration options that relate to
the PHB.

Table 2-15. PHB Hardware Configuration

Function Sample Pin(s) Sampled
State

Meaning

PCI 64-bit Enable REQ64_ 0 64-bit PCI Bus

1 32-bit PCI Bus

PPC Register Base RD[5] 0 Register Base = $FEFF0000

1 Register Base = $FEFE0000

MPIC Interrupt Type RD[7] 0 Parallel Interrupts

1 Serial Interrupts

PPC Arbiter Mode RD[8] 0 Disabled

1 Enabled

PCI Arbiter Mode RD[9] 0 Disabled

1 Enabled

2-50 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

Multi-Processor Interrupt Controller (MPIC)
The MPIC is a multi-processor structured intelligent interrupt controller.

MPIC Features:
❏ MPIC programming model

❏ Supports two processors

❏ Supports 16 external interrupts

❏ Supports 15 programmable Interrupt & Processor Task priority
levels

❏ Supports the connection of an external 8259 for ISA/AT
compatibility

❏ Distributed interrupt delivery for external I/O interrupts

❏ Direct/Multicast interrupt delivery for Interprocessor and timer
interrupts

❏ Four Interprocessor Interrupt sources

❏ Four timers

❏ Processor initialization control

PPC:PCI Clock Ratio RD[10:12] 000 Reserved

100 1:1

010 2:1

110 3:1

001 3:2

101 Reserved

011 5:2

111 Reserved

Table 2-15. PHB Hardware Configuration (Continued)

Function Sample Pin(s) Sampled
State

Meaning

Multi-Processor Interrupt Controller (MPIC)

http://www.motorola.com/computer/literature 2-51

2Architecture

The PCI Slave of the PHB implements two address decoders for placing
the MPIC registers in PCI IO or PCI Memory space. Access to these
registers requires PPC and PCI bus mastership. These accesses include
interrupt and timer initialization and interrupt vector reads.

The MPIC receives interrupt inputs from 16 external sources, four
interprocessor sources, four timer sources, and one Hawk internal error
interrupt source. The externally sourced interrupts 1 through 15 have two
modes of activation; low level or active high positive edge. External
interrupt 0 can be either level or edge activated with either polarity. The
Hawk internal error interrupt request is an active low level sensitive
interrupt. The Interprocessor and timers interrupts are event activated.

If the OPIC bit (refer to the General Control-Status/Feature Registers
section for more information) is enabled, the Hawk detected errors will be
passed on to MPIC. If the OPIC bit is disabled, Hawk detected errors are
passed directly to the processor 0 interrupt pin.

External Interrupt Interface

The external interrupt interface functions as either a parallel or a serial
interface depending on the EINTT bit in the MPIC Global Configuration
Register. If this bit is set, MPIC is in serial mode. Otherwise, MPIC
operates in the parallel mode.

In serial mode, all 16 external interrupts are serially scanned into MPIC
using the SI_STA and SI_DAT pins as shown in Figure 2-8.

In parallel mode, 16 external signal pins are used as interrupt inputs
(interrupts 0 through 15).

Figure 2-8. Serial Mode Interrupt Scan

PCLK

SI_STA

SI_DAT EXT0 EXT1 EXT2 EXT13EXT14 EXT15

2-52 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Using PCLK as a reference, external logic will pulse SI_STA one clock
period indicating the beginning of an interrupt scan period. On the same
clock period that SI_STA is asserted, external logic will feed the state of
EXT0 on the SI_DAT pin. External logic will continue to sequentially
place EXT1 through EXT15 on SI_DAT during the next 15 clock periods.
This process may be repeated at any rate, with the fastest possible next
assertion of SI_STA on the clock following the sampling of EXT15. Each
scan process must always scan exactly 16 external interrupts.

CSR’s Readability

Unless explicitly specified, all registers are readable and return the last
value written. The exceptions are the IPI dispatch registers and the EOI
registers which return zeros on reads, the interrupt source ACT bit which
returns current interrupt source status, the interrupt acknowledge register,
which returns the vector of the highest priority interrupt which is currently
pending, and reserved bits which returns zeros. The interrupt acknowledge
register is also the only register which exhibits any read side-effects.

Interrupt Source Priority

Each interrupt source is assigned a priority value in the range from 0 to 15
where 15 is the highest. In order for delivery of an interrupt to take place
the priority of the source must be greater than that of the destination
processor. Therefore setting a source priority to zero inhibits that interrupt.

Multi-Processor Interrupt Controller (MPIC)

http://www.motorola.com/computer/literature 2-53

2Processor’s Current Task Priority

Each processor has a task priority register which is set by system software
to indicate the relative importance of the task running on that processor.
The processor will not receive interrupts with a priority level equal to or
lower than its current task priority. Therefore, setting the current task
priority to 15 prohibits the delivery of all interrupts to the associated
processor.

Nesting of Interrupt Events

A processor is guaranteed never to have an in service interrupt preempted
by an equal or lower priority source. An interrupt is considered to be in
service from the time its vector is returned during an interrupt
acknowledge cycle until an EOI (End of Interrupt) is received for that
interrupt. The EOI cycle indicates the end of processing for the highest
priority in service interrupt.

Spurious Vector Generation

Under certain circumstances the MPIC will not have a valid vector to
return to the processor during an interrupt acknowledge cycle. In these
cases the spurious vector from the spurious vector register will be returned.
The following cases would cause a spurious vector fetch:

❏ INT is asserted in response to an externally sourced interrupt, which
is activated with level sensitive logic, and the asserted level is
negated before the interrupt is acknowledged.

❏ INT is asserted for an interrupt source, which is masked using the
mask bit, in the Vector-Priority register before the interrupt is
acknowledged.

2-54 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Interprocessor Interrupts (IPI)

Processors 0 and 1 can generate interrupts which are targeted for the other
or both processors. There are four Interprocessor Interrupts (IPI) channels.
The interrupts are initiated by writing a bit in the IPI dispatch registers. If
subsequent IPI’s are initiated before the first is acknowledged, only one IPI
will be generated. The IPI channels deliver interrupts in Direct Mode and
can be directed to more than one processor.

8259 Compatibility

The MPIC provides a mechanism to support PC-AT compatible chip sets
using the 8259 interrupt controller architecture. After power-on reset, the
MPIC defaults to 8259 pass-through mode. In this mode, if the OPIC is
enabled, interrupts from external source number 0 (the interrupt signal
from the 8259 is connected to this external interrupt source on the MPIC)
are passed directly to processor 0. If the pass-through mode is disabled and
the OPIC is enabled, the 8259 interrupts are delivered using the priority
and distribution mechanisms of the MPIC.

MPIC does not interact with the vector fetch from the 8259 interrupt
controller.

Hawk Internal Errror Interrupt

Hawk’s PHB and SMC detected errors are grouped together and sent to the
interrupt logic as a singular interrupt source (Hawk internal error
interrupt). This Hawk internal error interrupt request is an active low-level
sensitive interrupt. The interrupt delivery mode for this interrupt is
distributed. When the OPIC is disabled, the Hawk internal error interrupt
will be passed directly on to processor 0 INT pin.

For system implementations where the MPIC controller is not used, the
Hawk internal error condition will be made available by a signal which is
external to the Hawk ASIC. Presumably this signal will be connected to an
externally sourced interrupt input of an MPIC controller of a different
device. Since the MPIC specification defines external I/O interrupts to
operate in the distributed mode, the delivery mode of this error interrupt
should be consistent.

Multi-Processor Interrupt Controller (MPIC)

http://www.motorola.com/computer/literature 2-55

2Timers

There is a divide by eight pre scaler which is synchronized to the PHB
clock (PPC60x processor clock). The output of the pre scaler enables the
decrement of the four timers. The timers may be used for system timing or
to generate periodic interrupts. Each timer has four, registers which are
used for configuration and control. They are:

❏ Current Count Register

❏ Base Count Register

❏ Vector-Priority Register

❏ Destination Register

Interrupt Delivery Modes

The direct and distributed interrupt delivery modes are supported. Note
that the direct delivery mode has sub modes of multicast or non-multicast.
The IPIs and Timer interrupts operate in the direct delivery mode. The
externally sourced, or I/O interrupts operate in the distributed mode.

In the direct delivery mode, the interrupt is directed to one or both
processors. If it is directed to two processors (i.e. multicast), it will be
delivered to two processors. The interrupt is delivered to the processor
when the priority of the interrupt is greater than the priority contained in
the task register for that processor, and when the priority of the interrupt is
greater than any interrupt which is in-service for that processor. An
interrupt is considered to be in service from the time its vector is returned
during an interrupt acknowledge cycle until an EOI is received for that
interrupt. The EOI cycle indicates the end of processing for the highest
priority in service interrupt.

2-56 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 In the distributed delivery mode, the interrupt is pointed to one or more
processors but it will be delivered to only one processor. Therefore, for
externally sourced or I/O interrupts, multicast delivery is not supported.
The interrupt is delivered to a processor when the priority of the interrupt
is greater than the priority contained in the task register for that processor,
when the priority of the interrupt is greater than any interrupt which is in-
service for that processor, when the priority of that interrupt is the highest
of all interrupts pending for that processor, and when that interrupt is not
in-service for the other processor. If both destination bits are set for each
processor, the interrupt will be delivered to the processor that has a lower
task register priority. Note, due to a deadlock condition that can occur
when the task register priorities for each processor are the same and both
processors are targeted for interrupt delivery, the interrupt will be
delivered to processor 0 or processor 1 as determined by the TIE mode.
Additionally, if priorities are set the same for competing interrupts,
external int. 0 is given the highest priority in hardware followed by
external interrupt 1 through 15 and then followed by timer 0 through timer
3 and followed by IPI 0 and 1. For example, if both ext0 and ext1 interrupts
are pending with the same assigned priority; during the following interrupt
acknowledge cycles, the first vector returned shall be that of ext0 and then
ext1. This is an arbitrary choice.

Block Diagram Description

The description of the MPIC block diagram shown in Figure 2-9 focuses
on the theory of operation for the interrupt delivery logic.

Multi-Processor Interrupt Controller (MPIC)

http://www.motorola.com/computer/literature 2-57

2

Figure 2-9. MPIC Block Diagram

Program Visible
Registers

IPR

Int. signals

IRR_0

ISR_0

Interrupt
Selector_0

IRR_1

ISR_1

Interrupt
Selector_1

Interrupt Router

INT 0INT 1

2-58 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Program Visible Registers

These are the registers that software can access. They are described in
detail in the MPIC Registers section.

Interrupt Pending Register (IPR)

The interrupt signals to MPIC are qualified and synchronized to the clock
by the IPR. If the interrupt source is internal to the Hawk ASIC or external
with their Sense bit = 0 (edge sensitive), a bit is set in the IPR. That bit is
cleared when the interrupt associated with that bit is acknowledged. If the
interrupt source is external and level activated, the output from the IPR is
not negated until the level into the IPR is negated.

Externally sourced interrupts are qualified based upon their Sense and/or
Pol bits in the Vector-Priority register. IPI and Timer Interrupts are
generated internally to the Hawk ASIC and are qualified by their
Destination bit. Since the internally generated interrupts use direct delivery
mode with multicast capability, there are two bits in the IPR, one for each
processor, associated with each IPI and Timer interrupt source.

The MASK bits from the Vector-Priority registers are used to qualify the
output of the IPR. Therefore, if an interrupt condition is detected when the
MASK bit is set, that interrupt will be requested when the MASK bit is
lowered.

Interrupt Selector (IS)

There is a Interrupt Selector (IS) for each processor. The IS receives
interrupt requests from the IPR. If the interrupt request are from an
external source, they are qualified by the destination bit for that interrupt
and processor. If they are from an internal source, they have been qualified.
The output of the IS will be the highest priority interrupt that has been
qualified. This output is the priority of the selected interrupt and its source
identification. The IS will resolve an interrupt request in two PHB clock
ticks.

The IS also receives a second set of inputs from the ISR. During the End
Of Interrupt cycle, these inputs are used to select which bits are to be
cleared in the ISR.

Multi-Processor Interrupt Controller (MPIC)

http://www.motorola.com/computer/literature 2-59

2Interrupt Request Register (IRR)

There is a Interrupt Request Register (IRR) for each processor. The IRR
always passes the output of the IS except during Interrupt Acknowledge
cycles. This guarantees that the vector which is read from the Interrupt
Acknowledge Register does not change due to the arrival of a higher
priority interrupt. The IRR also serves as a pipeline register for the two tick
propagation time through the IS.

In-Service Register (ISR)

There is a In-Service Register (ISR) for each processor. The contents of the
ISR are the priority and source of all interrupts, which are in-service. The
ISR receives a bit-set command during Interrupt Acknowledge cycles and
a bit-clear command during End Of Interrupt cycles.

The ISR is implemented as a 40 bit register with individual bit set and clear
functions. Fifteen bits are used to store the priority level of each interrupt
which is in-service. Twenty-five bits are used to store the source
identification of each interrupt which is in service. Therefore, there is one
bit for each possible interrupt priority and one bit for each possible
interrupt source.

Interrupt Router

The Interrupt Router monitors the outputs from the ISR’s, Current Task
Priority Registers, Destination Registers, and the IRR’s to determine when
to assert a processor’s INT pin.

When considering the following rule sets, it is important to remember that
there are two types of inputs to the Interrupt Selectors. If the interrupt is a
distributed class interrupt, there is a single bit in the IPR associated with
this interrupt and it is delivered to both Interrupt Selectors. This IPR bit is
qualified by the destination register contents for that interrupt before the
Interrupt Selector compares its priority to the priority of all other
requesting interrupts for that processor. If the interrupt is programmed to
be edge sensitive, the IPR bit is cleared when the vector for that interrupt
is returned when the Interrupt Acknowledge register is examined. On the
other hand, if the interrupt is a direct/multicast class interrupt, there are two
bits in the IPR associated with this interrupt. One bit for each processor.
Then one of these bits is delivered to each Interrupt Selector. Since this

2-60 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 interrupt source can be multicast, each of these IPR bits must be cleared
separately when the vector is returned for that interrupt to a particular
processor.

If one of the following sets of conditions is true, the interrupt pin for
processor 0 is driven active.

❏ Set1

– The source ID in IRR_0 is from an external source.

– The destination bit for processor 1 is 0 for this interrupt.

– The priority from IRR_0 is greater than the highest priority in
ISR_0.

– The priority from IRR_0 is greater than the contents of task
register_0.

❏ Set2

– The source ID in IRR_0 is from an external source.

– The destination bit for processor 1 is a 1 for this interrupt.

– The source ID in IRR_0 is not present is ISR_1.

– The priority from IRR_0 is greater than the highest priority in
ISR_0.

– The priority from IRR_0 is greater than the Task Register_0
contents.

– The contents of Task Register_0 is less than the contents of Task
Register_1.

❏ Set3

– The source ID in IRR_0 is from an internal source.

– The priority from IRR_0 is greater than the highest priority in
ISR_0.

– The priority from IRR_0 is greater than the Task Register_0
contents.

There is a possibility for a priority tie between the two processors when
resolving external interrupts. In that case, the interrupt will be delivered to
processor 0 or processor 1 as determined by the TIE mode bit. This case is
not defined in the above rule set.

Multi-Processor Interrupt Controller (MPIC)

http://www.motorola.com/computer/literature 2-61

2Programming Notes

External Interrupt Service

The following summarizes how an external interrupt is serviced:

❏ An external interrupt occurs.

❏ The processor state is saved in the machine status save/restore
registers. A new value is loaded into the Machine State Register
(MSR). The External Interrupt Enable bit in the new MSR (MSRee)
is set to zero. Control is transferred to the O/S external interrupt
handler.

❏ The external interrupt handler calculates the address of the Interrupt
Acknowledge register for this processor (MPIC Base Address +
0x200A00) + (processor ID shifted left 12 bits).

❏ The external interrupt handler issues an Interrupt Acknowledge
request to read the interrupt vector from the Hawk’ MPIC. If the
interrupt vector indicates the interrupt source is the 8259, the
interrupt handler issues a second Interrupt Acknowledge request to
read the interrupt vector from the 8259. The Hawk’ MPIC does not
interact with the vector fetch from the 8259.

❏ The interrupt handler saves the processor state and other interrupt-
specific information in system memory and re-enables for external
interrupts (the MSRee bit is set to 1). MPIC blocks interrupts from
sources with equal or lower priority until an End-of-Interrupt is
received for that interrupt source. Interrupts from higher priority
interrupt sources continue to be enabled. If the interrupt source is the
8259, the interrupt handler issues an EOI request to the MPIC. This
resets the In-Service bit for the 8259 within the MPIC and allows it
to recognize higher priority interrupt requests, if any, from the 8259.
If none of the nested interrupt modes of the 8259 are enabled, the
interrupt handler issues an EOI request to the 8259.

2-62 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 – The device driver interrupt service routine associated with this
interrupt vector is invoked.

– If the interrupt source was not the 8259, the interrupt handler
issues an EOI request for this interrupt vector to the MPIC. If the
interrupt source was the 8259 and any of the nested interrupt
modes of the 8259 are enabled, the interrupt handler issues an
EOI request to the 8259.

Normally, interrupts from ISA devices are connected to the 8259 interrupt
controller. ISA devices typically rely on the 8259 Interrupt Acknowledge
to flush buffers between the ISA device and system memory. If interrupts
from ISA devices are directly connected to the MPIC (bypassing the
8259), the device driver interrupt service routine must read status from the
ISA device to ensure buffers between the device and system memory are
flushed.

Reset State

After power on reset, the MPIC state is:

❏ Current task priority for all CPUs set to 15.

❏ All interrupt source priorities set to zero.

❏ All interrupt source mask bits set to a one.

❏ All interrupt source activity bits cleared.

❏ Processor Init Register is cleared.

❏ All counters stopped and interrupts disabled.

❏ Controller mode set to 8259 pass-through.

Multi-Processor Interrupt Controller (MPIC)

http://www.motorola.com/computer/literature 2-63

2Operation

Interprocessor Interrupts

Four interprocessor interrupt (IPI) channels are provided for use by all
processors. During system initialization the IPI vector/priority registers for
each channel should be programmed to set the priority and vector returned
for each IPI event. During system operation a processor may generate an
IPI by writing a destination mask to one of the IPI dispatch registers. Note
that each IPI dispatch register is shared by both processors. Each IPI
dispatch register has two addresses but they are shared by both processors.
That is there is a total of four IPI dispatch registers in the MPIC.

The IPI mechanism may be used for self interrupts by programming the
dispatch register with the bit mask for the originating processor.

Dynamically Changing I/O Interrupt Configuration

The interrupt controller provides a mechanism for safely changing the
vector, priority, or destination of I/O interrupt sources. This is provided to
support systems which allow dynamic configuration of I/O devices. In
order to change the vector, priority, or destination of an active interrupt
source, the following sequence should be performed:

❏ Mask the source using the MASK bit in the vector/priority register.

❏ Wait for the activity bit (ACT) for that source to be cleared.

❏ Make the desired changes.

❏ Unmask the source.

This sequence ensures that the vector, priority, destination, and mask
information remain valid until all processing of pending interrupts is
complete.

2-64 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 EOI Register

Each processor has a private EOI register which is used to signal the end
of processing for a particular interrupt event. If multiple nested interrupts
are in service, the EOI command terminates the interrupt service of the
highest priority source. Once an interrupt is acknowledged, only sources
of higher priority will be allowed to interrupt the processor until the EOI
command is received. This register should always be written with a value
of zero which is the nonspecific EOI command.

Interrupt Acknowledge Register

Upon receipt of an interrupt signal, the processor may read this register to
retrieve the vector of the interrupt source which caused the interrupt.

8259 Mode

The 8259 mode bits control the use of an external 8259 pair for PC-AT
compatibility. Following reset this mode is set for pass through which
essentially disables the advanced controller and passes an 8259 input on
external interrupt source 0 directly through to processor zero. During
interrupt controller initialization this channel should be programmed for
mixed mode in order to take advantage of the interrupt delivery modes.

Current Task Priority Level

Each processor has a separate Current Task Priority Level register. The
system software uses this register to indicate the relative priority of the task
running on the corresponding processor. The interrupt controller will not
deliver an interrupt to a processor unless it has a priority level which is
greater than the current task priority level of that processor. This value is
also used in determining the destination for interrupts which are delivered
using the distributed deliver mode.

Multi-Processor Interrupt Controller (MPIC)

http://www.motorola.com/computer/literature 2-65

2Architectural Notes

The hardware and software overhead required to update the task priority
register synchronously with instruction execution may far outweigh the
anticipated benefits of the task priority register. To minimize this
overhead, the interrupt controller architecture should allow the task
priority register to be updated asynchronously with respect to instruction
execution. Lower priority interrupts may continue to occur for an
indeterminate number of cycles after the processor has updated the task
priority register. If this is not acceptable, the interrupt controller
architecture should recommend that, if the task priority register is not
implemented with the processor, the task priority register should only be
updated when the processor enters or exits an idle state.

Only when the task priority register is integrated within the processor, such
that it can be accessed as quickly as the MSRee bit, for example, should
the architecture require the task priority register be updated synchronously
with instruction execution.

Effects of Interrupt Serialization

All external interrupt sources that are level sensitive must be negated at
least N PCI clocks prior to doing an EOI cycle for that interrupt source,
where N is equal to the number of PCI clocks necessary to scan in the
external interrupts. In the example shown, 16 external interrupts are
scanned in, N = 16. Serializing the external interrupts causes a delay
between the time that the external interrupt source changes level and when
MPIC logic actually sees the change. Spurious interrupts can result if an
EOI cycle occurs before the interrupt source is seen to be negated by MPIC
logic.

2-66 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Registers
This section provides a detailed description of all PHB registers. The
section is divided into two parts: the first covers the PPC Registers and the
second covers the PCI Configuration Registers. The PPC Registers are
accessible only from the PPC bus using any single beat valid transfer size.
The PCI Configuration Registers reside in PCI configuration space. These
are primarily accessible from the PPC bus by using the
CONFIG_ADDRESS and CONFIG_DATA registers. The PPC Registers
are described first; the PCI Configuration Registers are described next. A
complete discussion of the MPIC registers can be found later in this
chapter.

It is possible to place the base address of the PPC registers at either
$FEFF0000 or $FEFE0000. Having two choices for where the base
registers reside allows the system designer to use two of the Hawk’s PCI
Host Bridges connected to one PPC60x bus. Please refer to the section
titled PHB Hardware Configuration for more information. All references
to the PPC registers of PHB within this document are made with respect to
the base address $FEFF0000.

The following conventions are used in the Hawk register charts:

❏ R Read Only field.

❏ R/W Read/Write field.

❏ S Writing a ONE to this field sets this field.

❏ C Writing a ONE to this field clears this field.

Registers

http://www.motorola.com/computer/literature 2-67

2PPC Registers

The PPC register map of the PHB is shown in Table 2-16.

Table 2-16. PPC Register Map for PHB

Bit --->
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

$FEFF0000 VENID DEVID

$FEFF0004 REVID

$FEFF0008 GCSR

$FEFF000C XARB PARB

$FEFF0010 XPAD

$FEFF0014

$FEFF0018

$FEFF001C

$FEFF0020 ETEST EENAB

$FEFF0024 ESTAT

$FEFF0028 EADDR

$FEFF002C EATTR

$FEFF0030 PIACK

$FEFF0034

$FEFF0038

$FEFF003C

$FEFF0040 XSADD0

$FEFF0044 XSOFF0 XSATT0

2-68 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

$FEFF0048 XSADD1

$FEFF004C XSOFF1 XSATT1

$FEFF0050 XSADD2

$FEFF0054 XSOFF2 XSATT2

$FEFF0058 XSADD3

$FEFF005C XSOFF3 XSATT3

$FEFF0060 WDT1CNTL

$FEFF0064 WDT1STAT

$FFEF0068 WDT2CNTL

$FEFF006C WDT2STAT

$FEFF0070 GPREG0(Upper)

$FEFF0074 GPREG0(Lower)

$FEFF0078 GPREG1(Upper)

$FEFF007C GPREG1(Lower)

Table 2-16. PPC Register Map for PHB (Continued)

Bit --->
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Registers

http://www.motorola.com/computer/literature 2-69

2Vendor ID/Device ID Registers

VENID Vendor ID. This register identifies the manufacturer of
the device. This identifier is allocated by the PCI SIG to
ensure uniqueness. $1057 has been assigned to Motorola
and is hardwired as a read-only value. This register is
duplicated in the PCI Configuration Registers.

DEVID Device ID. This register identifies this particular device.
The Hawk will always return $4803. This register is
duplicated in the PCI Configuration Registers.

Revision ID Register

REVID Revision ID. This register identifies the PHB revision
level. This register is duplicated in the PCI Configuration
Registers.

Address $FEFF0000

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name VENID DEVID

Operation R R

Reset $1057 $4803

Address $FEFF0004

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name REVID

Operation R R R R

Reset $00 $01 $00 $00

2-70 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 General Control-Status/Feature Registers

The General Control-Status Register (GCSR) provides miscellaneous
control and status information for the PHB. The bits within the GCSR are
defined as follows:

LEND Endian Select. If set, the PPC bus is operating in little
endian mode. The PPC address will be modified as
described in the section titled When PPC Devices are
Little Endian on page 2-39. When LEND is clear, the PPC
bus is operating in Big Endian mode, and all data to/from
PCI is swapped as described in the section titled When
PPC Devices are Big-Endian on page 2-38.

PFBR PCI Flush Before Read. If set, the PHB will guarantee
that all PPC initiated posted write transactions will be
completed before any PCI initiated read transactions will
be allowed to complete. When PFBR is clear, there will be
no correlation between these transaction types and their
order of completion. Please refer to the section on
Transaction Ordering for more information.

XMBH PPC Master Bus Hog. If set, the PPC master of the PHB
will operate in the Bus Hog mode. Bus Hog mode means
the PPC master will continually request the PPC bus for
the entire duration of each transfer.
If Bus Hog is not enabled, the PPC master will request the
bus in a normal manner. Please refer to the section titled
PPC Master for more information.

Address $FEFF0008

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name GCSR

LE
N

D

P
F

B
R

H
M

B
H

X
F

B
R

X
B

T
1

X
B

T
0

P
64

O
P

IC

X
ID

1
X

ID
0

Operation

R
/W

R R R R
/W

R
/W

R
/W

R
/W

R R

Reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Registers

http://www.motorola.com/computer/literature 2-71

2XFBR PPC Flush Before Read. If set, the PHB will guarantee
that all PCI initiated posted write transactions will be
completed before any PPC-initiated read transactions will
be allowed to complete. When XFBR is clear, there is no
correlation between these transaction types and their order
of completion. Refer to the section titled Transaction
Ordering for more information.

XBTx PPC Bus Time-out. This field specifies the enabling and
PPC bus time-out length to be used by the PPC timer. The
time-out length is encoded as follows:

P64M 64-bit PCI Mode. If set, the PHB is connected to a 64-bit
PCI bus. Refer to the section titled PHB Hardware
Configuration for more information on how this bit gets set.

OPIC OpenPIC Interrupt Controller Enable. If set, the PHB
detected errors will be passed on to the MPIC. If cleared,
PHB detected errors will be passed on to the processor 0 INT
pin.

XIDx PPC ID. This field is encoded as shown below to indicate
who is currently the PPC bus master. This information is
obtained by sampling the XARB0 thru XARB3 pins when in
external PPC arbitration mode. When in internal PPC
arbitration mode, this information is generated by the PPC
Arbiter. In a multi- processor environment, these bits allow
software to determine on which processor it is currently running.

.

MBT Time Out Length

00 256 msec

01 64 msec

10 8 msec

11 disabled

MID
Current PPC Data Bus

Master

00 device on ABG0*

01 device on ABG1*

10 device on ABG2

11 Hawk

2-72 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 PPC Arbiter/PCI Arbiter Control Registers

The PPC Arbiter Register (XARB) provides control and status for the PPC
Arbiter. Refer to the section titled PPC Arbiter for more information. The
bits within the XARB register are defined as follows:

FBRx Flatten Burst Read. This field is used by the PPC Arbiter
to control how bus pipelining will be affected after all
burst read cycles. The encoding of this field is shown in
the table below.

FSRx Flatten Single Read. This field is used by the PPC
Arbiter to control how bus pipelining will be affected after
all single beat read cycles. The encoding of this field is
shown in the table below.

FBWx Flastten Burst Write. This field is used by the PPC
Arbiter to control how bus pipelining will be affected after
all burst write cycles. The encoding of this field is shown
in the table below.

FSWx Flatten Single Write. This field is used by the PPC
Arbiter to control how bus pipelining will be affected after
all single beat write cycles. The encoding of this field is
shown in the table below.

Address $FEFF000C

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name XARB PARB

FB
R

1
FB

R
0

FS
R

1
FS

R
0

FB
W

1
FS

W
0

FS
W

1
FS

W
0

PR
I

PR
K

1
PR

K
0

E
N

A
PR

I1
PR

I0
PR

K
3

PR
K

2
PR

K
1

PR
K

0
H

IE
R

2
H

IE
R

1
H

IE
R

0
PO

L

E
N

A

Operation RW R
R

W
R

W
R

W R R R R R R R R R
R

/W
R

/W
R

/W
R

/W
R

/W
R

/W
R

/W R R
R

/W R

Reset 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

FBR/FSR/FBW/FSW Effects on Bus Pipelining
00 None

01 None

10 Flatten always

11 Flatten if switching masters

Registers

http://www.motorola.com/computer/literature 2-73

2PRI Priority. If set, the PPC Arbiter will impose a rotating
between CPU0 grants. If cleared, a fixed priority will be
established between CPU0 and CPU1 grants, with CPU0
having a higher priority than CPU1.

PRKx Parking. This field determines how the PPC Arbiter will
implement CPU parking. The encoding of this field is
shown in the table below.

ENA Enable. This read only bit indicates the enabled state of
the PPC Arbiter. If set, the PPC Arbiter is enabled and is
acting as the system arbiter. If cleared, the PPC Arbiter is
disabled and external logic is implementing the system
arbiter. Refer to the section titled PHB Hardware
Configuration for more information on how this bit gets
set.

The PCI Arbiter Register (PARB) provides control and status for the PCI
Arbiter. Refer to the section titled PCI Arbiter for more informatiion. The
bits within the PARB register are defined as follows:

PRIx Priority. This field is used by the PCI Arbiter to establish
a particular bus priority scheme. The encoding of this field
is shown in the following table.

PRK CPU Parking

00 None

01 Park on last CPU

10 Park always on CPU0

11 Park always on CPU1

PRI Priority Scheme

00 Fixed

01 Round Robin

10 Mixed

11 Reserved

2-74 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 PRKx Parking. This field is used by the PCI Arbiter to establish
a particular bus parking scheme. The encoding of this
field is shown in the following table.

HIERx Hierarchy. This field is used by the PCI Arbiter to
establish a particular priority ordering when using a fixed
or mixed mode priority scheme. When using the fixed
priority scheme, the encoding of this field is shown in the
table below.

PRK Parking Scheme

0000 Park on last master

0001 Park always on PARB6

0010 Park always on PARB5

0011 Park always on PARB4

0100 Park always on PARB3

0101 Park always on PARB2

0110 Park always on PARB1

0111 Park always on PARB0

1000 Park always on HAWK

1111 None

HIER Priority ordering, highest to lowest

000 PARB6 -> PARB5 -> PARB4 -> PARB3 -> PARB2 -> PARB1 -> PARB0 -> HAWK

001 HAWK -> PARB6 -> PARB5 -> PARB4 -> PARB3 -> PARB2 -> PARB1 -> PARB0

010 PARB0 -> HAWK -> PARB6 -> PARB5 -> PARB4 -> PARB3 -> PARB2 -> PARB1

011 PARB1 -> PARB0 -> HAWK -> PARB6 -> PARB5 -> PARB4 -> PARB3 -> PARB2

100 PARB2 -> PARB1 -> PARB0 -> HAWK -> PARB6 -> PARB5 -> PARB4 -> PARB3

101 PARB3 -> PARB2 -> PARB1 -> PARB0 -> HAWK -> PARB6 -> PARB5 -> PARB4

110 PARB4 -> PARB3 -> PARB2 -> PARB1 -> PARB0 -> HAWK -> PARB6 -> PARB5

111 PARB5 -> PARB4 -> PARB3 -> PARB2 -> PARB1 -> PARB0 -> HAWK -> PARB6

Registers

http://www.motorola.com/computer/literature 2-75

2When using the mixed priority scheme, the encoding of this field is shown
in the following table.

POL Park on lock. If set, the PCI Arbiter will park the bus on
the master that successfully obtains a PCI bus lock. The
PCI Arbiter keeps the locking master parked and does not
allow any non-locked masters to obtain access of the PCI
bus until the locking master releases the lock. If this bit is
cleared, the PCI Arbiter does not distinguish between
locked and non-locked cycles.

ENA Enable. This read only bit indicates the enabled state of
the PCI Arbiter. If set, the PCI Arbiter is enabled and is
acting as the system arbiter. If cleared, the PCI Arbiter is
disabled and external logic is implementing the system
arbiter. Please refer to the section titled PHB Hardware
Configuration for more information on how this bit gets
set.

HIER Priority ordering, highest to lowest

000 Group 1 -> Group 2 -> Group 3 -> Group 4

001 Group 4 -> Group 1 -> Group 2 -» Group 3

010 Group 3 -> Group 4 -> Group 1 -> Group 2

011 Group 2 -> Group 3 -> Group 4 -> Group 1

100 Reserved

101 Reserved

110 Reserved

111 Reserved

2-76 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Hardware Control-Status/Prescaler Adjust Register

The Hardware Control-Status Register (HCSR) provides hardware
specific control and status information for the PHB. The bits within the
HCSR are defined as follows:

XPRx PPC/PCI Clock Ratio. This is a read only field that is
used to indicate the clock ratio that has been established
by the PHB at the release of reset. The encoding of this
field is shown in the following table.

SPRQ Speculative PCI Request. If set, the PHB PCI Master
will perform speculative PCI requesting when a PCI
bound transaction has been retried due to bridge lock
resolution. If cleared, the PCI Master will only request the
PCI bus when a transaction is pending within the PHB
FIFOs.

Address $FEFF0010

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name HCSR XPAD
X

P
R

2
X

P
R

1
X

P
R

0

SP
R

Q
W

L
R

T
1

W
L

R
T

0
R

L
R

T
1

R
L

R
T

0

Operation

R R R R R R R R R R R
R

/W
R

/W
R

/W
R

/W
R

/W

R R/W

Reset 0 0 0 0 0 X X X 0 0 0 1 0 0 0 0 $00 $9C

XPR PPC60x/PCI clock ratio

000 Undefined

001 1:1

010 2:1

011 3:1

100 3:2

101 Undefined

110 5:2

111 Undefined

Registers

http://www.motorola.com/computer/literature 2-77

2WLRTx Write Lock Resolution Threshold. This field is used by
the PHB to determine a PPC bound write FIFO threshold
at which a bridge lock resolution will create a retry on a
pending PCI bound transaction. The encoding of this field
is shown in the following table.

RLRTx Read Lock Resolution Threshold. This field is used by
the PHB to determine a PPC bound read FIFO threshold
at which a bridge lock resolution will create a retry on a
pending PCI bound transaction. The encoding of this field
is shown in the following table.

The PPC Prescaler Adjust Register (XPAD) is used to specify a scale
factor for the prescaler to ensure that the time base for the bus timer is
1MHz. The scale factor is calculated as follows:

XPAD = 256 - Clk,

where Clk is the frequency of the CLK input in MHz. The following table
shows the scale factors for some common CLK frequencies.

WLRT Write lock resolution threshold
00 Match write threshold mode (i.e. PSATTx WXFT)

01 Immediate

10 FIFO full

11 FIFO full

RLRT Read lock resolution threshold
00 Match read threshold mode (i.e. PSATTx RXFT or RMFT)

01 Immediate

10 FIFO less than 1 cache line

11 FIFO less than 1 cache line

Frequency XPAD

100 $9C

83 $AD

66 $BE

50 $CE

2-78 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 PPC Error Test/Error Enable Register

The Error Test Register (ETEST) provides you with a way to send certain
types of errors to test the PHB error capture and status circuitry. The bits
within the ETEST are defined as follows:

DPEx Data Parity Error Enable. These bits are used for test
reasons to purposely inject data parity errors whenever the
PHB is sourcing PPC data. A data parity error will be
created on the corresponding PPC data parity bus if a bit
is set. For example, setting DPE0 will cause DP0 to be
generated incorrectly. If the bit is cleared, the PHB will
generate correct data parity.

APEx Address Parity Error Enable. These bits are used for
test reasons to purposely inject address parity errors
whenever the PHB is acting as a PPC bus master. An
address parity error will be created on the corresponding
PPC address parity bus if a bit is set. For example, setting
APE0 will cause AP0 to be generated incorrectly. If the
bit is cleared, the PHB will generate correct address
parity.

The Error Enable Register (EENAB) controls how the PHB is to respond
to the detection of various errors. In particular, each error type can
uniquely be programmed to generate a machine check, generate an
interrupt, generate both, or generate neither. The bits within the ETEST are
defined as follows:

Address $FEFF0020
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name ETEST EENAB

D
PE

0
D

PE
1

D
PE

2
D

PE
3

D
PE

4
D

PE
5

D
PE

6
D

PE
7

A
PE

0
A

PE
1

A
PE

2
A

PE
3

D
F

LT
X

B
T

O
M

X
D

PE
M

PP
E

R
M

PS
E

R
M

PS
M

A
M

PR
TA

M

X
B

T
O

II
X

D
P

E
I

PP
E

R
I

PS
E

R
I

P
SM

A
I

PR
TA

I

Operation

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W R R R R

R
/W

R
/W

R
/W

R
/W R

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W R R

R
/W

R
/W

R
/W

R
/W

R
/W

R
/W

Reset 0

Registers

http://www.motorola.com/computer/literature 2-79

2DFLT Default PPC Master ID. This bit determines which
MCHK_ pin will be asserted for error conditions in which
the PPC master ID cannot be determined or the PHB was
the PPC master. For example, in the event of a PCI parity
error for a transaction in which the PHB’s PCI master was
not involved, the PPC master ID cannot be determined.
When DFLT is set, MCHK1_ is used. When DFLT is
clear, MCHK0_ will be used.

XBTOM PPC Address Bus Time-out Machine Check Enable.
When this bit is set, the XBTO bit in the ESTAT register
will be used to assert the MCHK output to the current
address bus master. When this bit is clear, MCHK will not
be asserted.

XDPEM PPC Data Parity Error Machine Check Enable. When
this bit is set, the XDPE bit in the ESTAT register will be
used to assert the MCHK output to the current address bus
master. When this bit is clear, MCHK will not be asserted.

PPERM PCI Parity Error Machine Check Enable. When this
bit is set, the PPER bit in the ESTAT register will be used
to assert the MCHK output to bus master 0. When this bit
is clear, MCHK will not be asserted.

PSERM PCI System Error Machine Check Enable. When this
bit is set, the PSER bit in the ESTAT register will be used
to assert the MCHK output to bus master 0. When this bit
is clear, MCHK will not be asserted.

PSMAM PCI Signalled Master Abort Machine Check Enable.
When this bit is set, the PSMA bit in the ESTAT register
will be used to assert the MCHK output to the bus master
which initiated the transaction. When this bit is clear,
MCHK will not be asserted.

PRTAM PCI Master Received Target Abort Machine Check
Enable. When this bit is set, the PRTA bit in the ESTAT
register will be used to assert the MCHK output to the bus
master which initiated the transaction. When this bit is
clear, MCHK will not be asserted.

2-80 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 XBTOI PPC Address Bus Time-out Interrupt Enable. When
this bit is set, the XBTO bit in the MERST register will be
used to assert an interrupt through the MPIC interrupt
controller. When this bit is clear, no interrupt will be
asserted.

XDPEI PPC Data Parity Error Interrupt Enable. When this bit
is set, the XDPE bit in the ESTAT register will be used to
assert an interrupt through the MPIC. When this bit is
clear, no interrupt will be asserted.

PPERI PCI Parity Error Interrupt Enable. When this bit is set,
the PPER bit in the ESTAT register will be used to assert
an interrupt through the MPIC interrupt controller. When
this bit is clear, no interrupt will be asserted.

PSERI PCI System Error Interrupt Enable. When this bit is
set, the PSER bit in the ESTAT register will be used to
assert an interrupt through the MPIC interrupt controller.
When this bit is clear, no interrupt will be asserted.

PSMAI PCI Master Signalled Master Abort Interrupt Enable.
When this bit is set, the PSMA bit in the ESTAT register
will be used to assert an interrupt through the MPIC
interrupt controller. When this bit is clear, no interrupt
will be asserted.

PRTAI PCI Master Received Target Abort Interrupt Enable.
When this bit is set, the PRTA bit in the ESTAT register
will be used to assert an interrupt through the MPIC
interrupt controller. When this bit is clear, no interrupt
will be asserted.

Registers

http://www.motorola.com/computer/literature 2-81

2PPC Error Status Register

The Error Status Register (ESTAT) provides an array of status bits
pertaining to the various errors that the PHB can detect. The bits within the
ESTAT are defined in the following paragraphs.

OVF Error Status Overflow. This bit is set when any error is
detected and any of the error status bits are already set. It
may be cleared by writing a 1 to it; writing a 0 to it has no
effect.

XBTO PPC Address Bus Time-out. This bit is set when the PPC
timer times out. It may be cleared by writing a 1 to it;
writing a 0 to it has no effect. When the XBTOM bit in the
EENAB register is set, the assertion of this bit will assert
MCHK to the master designated by the XID field in the
EATTR register. When the XBTOI bit in the EENAB
register is set, the assertion of this bit will assert an
interrupt through the MPIC.

XDPE PPC Data Parity Error. This bit is set when the PHB
detects a data bus parity error. It may be cleared by writing
a 1 to it; writing a 0 to it has no effect. When the XDPEM
bit in the EENAB register is set, the assertion of this bit
will assert MCHK to the master designated by the XID
field in the EATTR register. When the XDPEI bit in the
EENAB register is set, the assertion of this bit will assert
an interrupt through the MPIC.

Address $FEFF0024

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name ESTAT

O
V

F

X
B

T
O

X
D

P
E

PP
E

R
PS

E
R

PS
M

A
PR

TA

Operation R R R R
/C

R R
/C

R R
/C

R
/C

R
/C

R
/C

Reset $00 $00 $00 0 0 0 0 0 0 0 0

2-82 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 PPER PCI Parity Error. This bit is set when the PCI PERR_
pin is asserted. It may be cleared by writing it to a 1;
writing it to a 0 has no effect. When the PPERM bit in the
EENAB register is set, the assertion of this bit will assert
MCHK to the master designated by the DFLT bit in the
EATTR register. When the PPERI bit in the EENAB
register is set, the assertion of this bit will assert an
interrupt through the MPIC.

PSER PCI System Error. This bit is set when the PCI SERR_
pin is asserted. It may be cleared by writing it to a 1;
writing it to a 0 has no effect. When the PSERM bit in the
EENAB register is set, the assertion of this bit will assert
MCHK to the master designated by the DFLT bit in the
EATTR register. When the PSERI bit in the EENAB
register is set, the assertion of this bit will assert an
interrupt through the MPIC.

PSMA PCI Master Signalled Master Abort. This bit is set
when the PCI master signals master abort to terminate a
PCI transaction. It may be cleared by writing it to a 1;
writing it to a 0 has no effect. When the PSMAM bit in the
EENAB register is set, the assertion of this bit will assert
MCHK to the master designated by the XID field in the
EATTR register. When the PSMAI bit in the EENAB
register is set, the assertion of this bit will assert an
interrupt through the MPIC.

PRTA PCI Master Received Target Abort. This bit is set when
the PCI master receives target abort to terminate a PCI
transaction. It may be cleared by writing it to a 1; writing
it to a 0 has no effect. When the PRTAM bit in the
EENAB register is set, the assertion of this bit will assert
MCHK to the master designated by the XID field in the
EATTR register. When the PRTAI bit in the EENAB
register is set, the assertion of this bit will assert an
interrupt through the MPIC.

Registers

http://www.motorola.com/computer/literature 2-83

2PPC Error Address Register

The Error Address Register (EADDR) captures addressing information on
the various errors that the PHB can detect. The register captures the PPC
address when the XBTO bit is set in the ESTAT register. The register
captures the PCI address when the PSMA or PRTA bits are set in the
ESTAT register. The register’s contents are not defined when the XDPE,
PPER or PSER bits are set in the ESTAT register.

Address $FEFF0028

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name EAADR

Operation R

Reset $00000000

2-84 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 PPC Error Attribute Register

The Error Attribute Register (EATTR) captures attribute information on
the various errors that the PHB can detect. If the XDPE, PPER or PSER
bits are set in the ESTAT register, the contents of the EATTR register are
zero. If the XBTO bit is set the register is defined by the following table:

XIDx PPC Master ID. This field contains the ID of the PPC
master which originated the transfer in which the error
occurred. The encoding scheme is identical to that used in
the GCSR register.

TBST Transfer Burst. This bit is set when the transfer in which
the error occurred was a burst transfer.

TSIZx Transfer Size. This field contains the transfer size of the
PPC transfer in which the error occurred.

TTx Transfer Type. This field contains the transfer type of the
PPC transfer in which the error occurred.

Address $FEFF002C

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name EATTR
X

ID
1

X
ID

0

T
B

S
T

T
S

IZ
0

T
S

IZ
1

T
S

IZ
2

T
T

0
T

T
1

T
T

2
T

T
3

T
T

4

Operation R R R R R R R R R R R R R R R R R R

Reset $00 $00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Registers

http://www.motorola.com/computer/literature 2-85

2If the PSMA or PRTA bit are set, the register is defined by the following
table:

WP Write Post Completion. This bit is set when the PCI
master detects an error while completing a write post
transfer.

XIDx PPC Master ID. This field contains the ID of the PPC
master which originated the transfer in which the error
occurred. The encoding scheme is identical to that used in
the GCSR register.

COMMx PCI Command. This field contains the PCI command of
the PCI transfer in which the error occurred.

BYTEx PCI Byte Enable. This field contains the PCI byte
enables of the PCI transfer in which the error occurred. A
set bit designates a selected byte.

Address $FEFF002C

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name EATTR

W
P

M
ID

1
M

ID
0

C
O

M
M

3
C

O
M

M
2

C
O

M
M

1
C

O
M

M
0

B
Y

T
E

7
B

Y
T

E
6

B
Y

T
E

5
B

Y
T

E
4

B
Y

T
E

3
B

Y
T

E
2

B
Y

T
E

1
B

Y
T

E
0

Operation R R R R R R R R R R R R R R R R R R

Reset $00 $00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2-86 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 PCI Interrupt Acknowledge Register

The PCI Interrupt Acknowledge Register (PIACK) is a read only register
that is used to initiate a single PCI Interrupt Acknowledge cycle. Any
single byte or combination of bytes may be read from, and the actual byte
enable pattern used during the read will be passed on to the PCI bus. Upon
completion of the PCI interrupt acknowledge cycle, the PHB will present
the resulting vector information obtained from the PCI bus as read data.

Address $FEFF0030

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name PIACK

Operation R

Reset $00000000

Registers

http://www.motorola.com/computer/literature 2-87

2PPC Slave Address (0,1 and 2) Registers

The PPC Slave Address Registers (XSADD0, XSADD1, and XSADD2)
contains address information associated with the mapping of PPC memory
space to PCI memory I/O space. The fields within the XSADDx registers
are defined as follows:

START Start Address. This field determines the start address of
a particular memory area on the PPC bus which will be
used to access PCI bus resources. The value of this field
will be compared with the upper 16 bits of the incoming
PPC address.

END End Address. This field determines the end address of a
particular memory area on the PPC bus which will be used
to access PCI bus resources. The value of this field will be
compared with the upper 16 bits of the incoming PPC
address.

Address XSADD0 - $FEFF0040
XSADD1 - $FEFF0048
XSADD2 - $FEFF0050

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name XSADDx

START END

Operation R/W R/W

Reset $0000 $0000

2-88 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 PPC Slave Offset/Attribute (0, 1 and 2) Registers

The PPC Slave Offset Registers (XSOFF0, XSOFF1, and XSOFF2)
contains offset information associated with the mapping of PPC memory
space to PCI memory I/O space. The field within the XSOFFx registers is
defined as follows:

XSOFFx PPC Slave Offset. This register contains a 16-bit offset
that is added to the upper 16 bits of the PPC address to
determine the PCI address used for transfers from the PPC
bus to PCI. This offset allows PCI resources to reside at
addresses that would not normally be visible from the
PPC bus.

The PPC Slave Attributes Registers (XSATT0, XSATT1, and XSATT2)
contain attribute information associated with the mapping of PPC memory
space to PCI memory I/O space. The bits within the XSATTx registers are
defined as follows:

REN Read Enable. If set, the corresponding PPC Slave is
enabled for read transactions.

WEN Write Enable. If set, the corresponding PPC Slave is
enabled for write transactions.

WPEN Write Post Enable. If set, write posting is enable for the
corresponding PPC Slave.

Address XSOFF0/XSATT0 - $FEFF0044
XSOFF1/XSATT1 - $FEFF004C
XSOFF2/XSATT2 - $FEFF0054

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name XSOFFx XSATTx

R
E

N
W

E
N

W
P

E
N

M
E

M
IO

M

Operation R/W R

R
/W

R
/W R

R
/W R R

R
/W

R
/W

Reset $0000 $00 0 0 0 0 0 0 0 0

Registers

http://www.motorola.com/computer/literature 2-89

2MEM PCI Memory Cycle. If set, the corresponding PPC Slave
will generate transfers to or from PCI memory space.
When clear, the corresponding PPC Slave will generate
transfers to or from PCI I/O space using the addressing
mode defined by the IOM field.

IOM PCI I/O Mode. If set, the corresponding PPC Slave will
generate PCI I/O cycles using spread addressing as
defined in the section titled Generating PCI Cycles. When
clear, the corresponding PPC Slave will generate PCI I/O
cycles using contiguous addressing. This field only has
meaning when the MEM bit is clear.

PPC Slave Address (3) Register

The PPC Slave Address Register 3 (XSADD3) contains address
information associated with the mapping of PPC memory space to PCI I/O
space. XSADD3 (in conjunction with XSOFF3/XSATT3) is the only
register group that can be used to initiate access to the PCI
CONFIG_ADDRESS ($80000CF8) and CONFIG_DATA ($80000CFC)
registers. The power up value of XSADD3 (and XSOFF3/XSATT3) are
set to allow access to these special register spaces without PPC register
initialization.

Address MSADD3 - $FEFF0058

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name XSADD3

START END

Operation R/W R/W

Reset Regbase 0xfeff0000 => $8000
Regbase 0xfefe0000 => $9000

Regbase 0xfeff0000 => $8080
Regbase 0xfefe0000 => $9080

2-90 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 The fields within XSADD3 are defined as follows:

START Start Address. This field determines the start address of
a particular memory area on the PPC bus which will be
used to access PCI bus resources. The value of this field
will be compared with the upper 16 bits of the incoming
PPC address.

END End Address. This field determines the end address of a
particular memory area on the PPC bus which will be used
to access PCI bus resources. The value of this field will be
compared with the upper 16 bits of the incoming PPC
address.

PPC Slave Offset/Attribute (3) Registers

The PPC Slave Offset Register 3 (XSOFF3) contains offset information
associated with the mapping of PPC memory space to PCI I/O space. The
field within the XSOFF3 register is defined as follows:

XSOFFx PPC Slave Offset. This register contains a 16-bit offset
that is added to the upper 16 bits of the PPC address to
determine the PCI address used for transfers from the PPC
bus to PCI. This offset allows PCI resources to reside at
addresses that would not normally be visible from the
PPC bus. It is initialized to $8000 to facilitate a zero based
access to PCI space.

Address XSOFF3/XSATT3 - $FEFF005C

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name XSOFF3 XSATT3

R
E

N
W

E
N

W
PE

N

IO
M

Operation R/W R
R

/W
R

/W R
R

/W R R R
R

/W

Reset Regbase 0xfeff0000 => $8000
Regbase 0xfefe0000 => $7000

$00
1 1 0 0 0 0 0 0

Registers

http://www.motorola.com/computer/literature 2-91

2The PPC Slave Attributes Register 3 (XSATT3) contains attribute
information associated with the mapping of PPC memory space to PCI I/O
space. The bits within the XSATT3 register are defined as follows:

REN Read Enable. If set, the corresponding PPC slave is
enabled for read transactions.

WEN Write Enable. If set, the corresponding PPC slave is
enabled for write transactions.

WPEN Write Post Enable. If set, write posting is enabled for the
corresponding PPC slave.

IOM PCI I/O Mode. If set, the corresponding PPC slave will
generate PCI I/O cycles using spread addressing as
defined in the section on Generating PCI Cycles. When
clear, the corresponding PPC slave will generate PCI I/O
cycles using contiguous addressing.

WDTxCNTL Registers

The Watchdog Timer Control Registers (WDT1CNTL and
WDT2CNTL) are used to provide control information to the watchdog
timer functions within the PHB. The fields within WDTxCNTL registers
are defined as follows:

Address WDT1CNTL - $FEFF0060
WDT2CNTL - $FEFF0068

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name
WDTxCNTL

KEY

E
N

A
B

A
R

M

RES RELOAD

Operation W

R
/W R

R R/W R/W

Reset $00 1 0

00 $7 or $8 $FF

2-92 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 KEY Key. This field is used during the two step arming process
of the Control register. This field is sensitive to the
following data patterns:

PATTERN_1 = $55

PATTERN_2 = $AA

The Control register will be in the armed state if
PATTERN_1 is written to the KEY field. The Control
register will be changed if in the armed state and
PATTERN_2 is written to the KEY field. An incorrect
sequence of patterns will cause the Control register to be
in the unarmed state.

A value of all zeros will always be returned within the
KEY field during read cycles.

ENAB ENAB. This field determines whether or not the WDT is
enabled. If a one is written to this bit, the timer will be
enabled. A zero written to this bit will disable the timer.
The ENAB bit may only be modified on the second step
of a successful two step arming process.

ARM ARMED. This read-only bit indicates the armed state of
the register. If this bit is a zero, the register is unarmed. If
this bit is a one, the register is armed for a write.

RES RESOLUTION. This field determines the resolution of
the timer. The RES field may only be modified on the
second step of a successful two step arming process. The
following table shows the different options associated
with this bit.

RES Timer Resolution Approximate Max
Time

0000 1 us 64 msec

0001 2 us 128 msec

0010 4 us 256 msec

0011 8 us 512 msec

Registers

http://www.motorola.com/computer/literature 2-93

2

RELOAD Reload. This field is written with a value that will be used
to reload the timer. The RELOAD field may only be
modified on the second step of a successful two step
arming process.

0100 16 us 1 sec

0101 32 us 2 sec

0110 64 us 4 sec

0111 128 us 8 sec

1000 256 us 16 sec

1001 512 us 32 sec

1010 1024 us 1 min

1011 2048 us 2 min

1100 4096 us 4 min

1101 8192 us 8 min

1110 16,384 us 16 min

1111 32,768 us 32 min

RES Timer Resolution Approximate Max
Time

2-94 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 WDTxSTAT Registers

The Watchdog Timer Status Registers (WDT1STAT and WDT2STAT)
are used to provide status information from the watchdog timer functions
within the PHB. The field within WDTxSTAT registers is defined as
follows:

COUNT Count. This read-only field reflects the instantaneous
counter value of the WDT.

General Purpose Registers

The General Purpose Registers (GPREG0, GPREG1, GPREG2, and
GPREG3) are provided for inter-process message passing or general
purpose storage. They do not control any hardware.

Address WDT1STAT - $FEFF0064
WDT2STAT - $FEFF006C

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

WDTxSTAT

Name COUNT

Operation R R R

Reset $00 $00 $FF

Address GPREG0 (Upper) - $FEFF0070
GPREG0 (Lower) - $FEFF0074
GPREG1 (Upper) - $FEFF0078
GPREG1 (Lower) - $FEFF007C

Bit
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name GPREGx

Operation R/W

Reset $00000000

Registers

http://www.motorola.com/computer/literature 2-95

2PCI Registers

The PCI Configuration Registers are compliant with the configuration
register set described in the PCI Local Bus Specification, Revision 2.1.
The CONFIG_ADDRESS and CONFIG_DATA registers described in
this section are accessed from the PPC bus within PCI I/O space.

All write operations to reserved registers will be treated as no-ops. That is,
the access will be completed normally on the bus and the data will be
discarded. Read accesses to reserved or unimplemented registers will be
completed normally and a data value of 0 will be returned.

The PCI Configuration Register map of the PHB is shown in Table 2-17.
The PCI I/O Register map of the PHB is shown in Table 2-18

Table 2-17. PCI Configuration Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

<--- Bit

DEVID VENID $00

STATUS COMMAND $04

CLASS REVID $08

HEADER $0C

MIBAR $10

MMBAR $14

$18 - $7C

PSADD0 $80

PSOFF0 PSATT0 $84

PSADD1 $88

PSOFF1 PSATT1 $8C

PSADD2 $90

PSOFF2 PSATT2 $94

PSADD3 $98

PSOFF3 PSATT3 $9C

2-96 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

Vendor ID/ Device ID Registers

VENID Vendor ID. This register identifies the manufacturer of
the device. This identifier is allocated by the PCI SIG to
ensure uniqueness. $1057 has been assigned to Motorola.
This register is duplicated in the PPC Registers.

DEVID Device ID. This register identifies the particular device.
The Hawk will always return $4803. This register is
duplicated in the PPC Registers.

Table 2-18. PCI I/O Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

<--- Bit

CONFIG_ADDRESS $CF8

CONFIG_DATA $CFC

Offset $00

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name DEVID VENID

Operation R R

Reset $4803 $1057

Registers

http://www.motorola.com/computer/literature 2-97

2PCI Command/ Status Registers

The Command Register (COMMAND) provides course control over the
PHB ability to generate and respond to PCI cycles. The bits within the
COMMAND register are defined as follows:

IOSP IO Space Enable. If set, the PHB will respond to PCI I/O
accesses when appropriate. If cleared, the PHB will not
respond to PCI I/O space accesses.

MEMSP Memory Space Enable. If set, the PHB will respond to
PCI memory space accesses when appropriate. If cleared,
the PHB will not respond to PCI memory space accesses.

MSTR Bus Master Enable. If set, the PHB may act as a master
on PCI. If cleared, the PHB may not act as a PCI master.

PERR Parity Error Response. If set, the PHB will check parity
on all PCI transfers. If cleared, the PHB will ignore any
parity errors that it detects and continue normal operation.

SERR System Error Enable. This bit enables the SERR_ output
pin. If clear, the PHB will never drive SERR_. If set, the
PHB will drive SERR_ active when a system error is
detected.

Offset $04

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name STATUS COMMAND

R
C

V
PE

S
IG

SE
R

C
V

M
A

R
C

V
TA

SI
G

TA
SE

LT
IM

1
SE

LT
IM

0
D

PA
R

FA
ST

P6
6M SE

R
R

PE
R

R

M
ST

R
M

E
M

S
P

IO
SP

Operation

R
/C

R
/C

R
/C

R
/C

R
/C R R R
/C R R R R R R R R R R R R R R R

R
/W R

R
/W R R R

R
/W

R
/W

R
/W

Reset 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

2-98 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 The Status Register (STATUS) is used to record information for PCI bus
related events. The bits within the STATUS register are defined as follows:

P66M PCI66 MHz. This bit indicates the PHB is capable of
supporting a 66.67 MHz PCI bus.

FAST Fast Back-to-Back Capable. This bit indicates that the
PHB is capable of accepting fast back-to-back
transactions with different targets.

DPAR Data Parity Detected. This bit is set when three
conditions are met: 1) the PHB asserted PERR_ itself or
observed PERR_ asserted; 2) the PHB was the PCI master
for the transfer in which the error occurred; 3) the PERR
bit in the PCI Command Register is set. This bit is cleared
by writing it to 1; writing a 0 has no effect.

SELTIM DEVSEL Timing. This field indicates that the PHB will
always assert DEVSEL_ as a ‘medium’ responder.

SIGTA Signalled Target Abort. This bit is set by the PCI slave
whenever it terminates a transaction with a target-abort. It
is cleared by writing it to 1; writing a 0 has no effect.

RCVTA Received Target Abort. This bit is set by the PCI master
whenever its transaction is terminated by a target-abort. It
is cleared by writing it to 1; writing a 0 has no effect.

RCVMA Received Master Abort. This bit is set by the PCI master
whenever its transaction (except for Special Cycles) is
terminated by a master-abort. It is cleared by writing it to
1; writing a 0 has no effect.

SIGSE Signaled System Error. This bit is set whenever the PHB
asserts SERR_. It is cleared by writing it to 1; writing a 0
has no effect.

RCVPE Detected Parity Error. This bit is set whenever the PHB
detects a parity error, even if parity error checking is
disabled (see bit PERR in the PCI Command Register). It
is cleared by writing it to 1; writing a 0 has no effect.

Registers

http://www.motorola.com/computer/literature 2-99

2Revision ID/ Class Code Registers

REVID Revision ID. This register identifies the PHB revision
level. This register is duplicated in the PPC Registers.

CLASS Class Code. This register identifies PHB as the following:

Base Class Code $06 PCI Bridge Device

Subclass Code $00 PCI Host Bridge

Program Class Code $00 Not Used

Header Type Register

The Header Type Register (Header) identifies the PHB as the following:

Header Type: $00 - Single Function Configuration Header

Offset $08

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name CLASS REVID

Operation R R

Reset $060000 $01

Offset $0C

Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name HEADER

Operation R R R R

Reset $00 $00 $00 $00

2-100 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 MPIC I/O Base Address Register

The MPIC I/O Base Address Register (MIBAR) controls the mapping of
the MPIC control registers in PCI I/O space.

IO/MEM IO Space Indicator. This bit is hard-wired to a logic one
to indicate PCI I/O space.

RES Reserved. This bit is hard-wired to zero.

BASE Base Address. These bits define the I/O space base
address of the MPIC control registers. The MIBAR
decoder is disabled when the BASE value is zero.

MPIC Memory Base Address Register

Offset $10

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name MIBAR

BASE R
E

S
IO

/M
E

M

Operation R/W R R R

Reset $0000 $0000 0 1

Offset $14

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name MMBAR

BASE P
R

E
M

T
Y

P
1

M
T

Y
P

0
IO

/M
E

M

Operation R/W R R R R R

Reset $0000 $0000 0 0 0 0

Registers

http://www.motorola.com/computer/literature 2-101

2The MPIC Memory Base Address Register (MMBAR) controls the
mapping of the MPIC control registers in PCI memory space.

IO/MEM IO Space Indicator. This bit is hard-wired to a logic zero
to indicate PCI memory space.

MTYPx Memory Type. These bits are hard-wired to zero to
indicate that the MPIC registers can be located anywhere
in the 32-bit address space.

PRE Prefetch. This bit is hard-wired to zero to indicate that the
MPIC registers are not prefetchable.

BASE Base Address. These bits define the memory space base
address of the MPIC control registers. The MBASE
decoder is disabled when the BASE value is zero.

PCI Slave Address (0,1,2, and 3) Registers

Offset PSADD0 - $80
PSADD1 - $88
PSADD2 - $90
PSADD3 - $98

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name PSADDx

START END

Operation R/W R/W

Reset $0000 $0000

2-102 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 The PCI Slave Address Registers (PSADDx) contain address information
associated with the mapping of PCI memory space to PPC memory space.
The fields within the PSADDx registers are defined as follows:

START Start Address. This field determines the start address of
a particular memory area on the PCI bus which will be
used to access PPC bus resources. The value of this field
will be compared with the upper 16 bits of the incoming
PCI address.

END End Address. This field determines the end address of a
particular memory area on the PCI bus which will be used
to access PPC bus resources. The value of this field will
be compared with the upper 16 bits of the incoming PCI
address.

PCI Slave Attribute/ Offset (0,1,2 and 3) Registers

The PCI Slave Attribute Registers (PSATTx) contain attribute information
associated with the mapping of PCI memory space to PPC memory space.
The fields within the PSATTx registers are defined as follows:

Offset PSOFF0/PSATT0 - $84
PSOFF1/PSATT1 - $8C
PSOFF2/PSATT2 - $94
PSOFF3/PSATT3 - $9C

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name PSOFFx PSATTx

W
X

FT
1

W
X

FT
0

R
X

FT
1

R
X

FT
0

R
M

FT
1

R
M

FT
0

R
E

N
W

E
N

W
PE

N
R

A
E

N

G
B

L
IN

V

Operation R/W

R
/W

R
/W

R R R
/W

R
/W

R
/W

R
/W R
/w

R
/W

R
/W

R
/W R R

R
/W

R
/W

Reset $0000 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

Registers

http://www.motorola.com/computer/literature 2-103

2INV Invalidate Enable. If set, the PPC master will issue a
transfer type code which specifies the current transaction
should cause an invalidate for each PPC transaction
originated by the corresponding PCI slave. The transfer
type codes generated are shown in Table 2-3.

GBL Global Enable. If set, the PPC master will assert the
GBL_ pin for each PPC transaction originated by the
corresponding PCI slave.

RAEN Read Ahead Enable. If set, read ahead is enabled for the
corresponding PCI slave.

WPEN Write Post Enable. If set, write posting is enabled for the
corresponding PCI slave.

WEN Write Enable. If set, the corresponding PCI slave is
enabled for write transactions.

REN Read Enable. If set, the corresponding PCI slave is
enabled for read transactions.

RMFTx Read Multiple FIFO Threshold. This field is used by
the PHB to determine a FIFO threshold at which to
continue prefetching data from local memory during PCI
read multiple transactions. This threshold applies to
subsequent prefetch reads since all initial prefetch reads
will be four cache lines. This field is only applicable if
read-ahead has been enabled. The encoding of this field is
shown in the table below.

RXFTx Read Any FIFO Threshold. This field is used by the
PHB to determine a FIFO threshold at which to continue
prefetching data from local memory during PCI read and
read line transactions. This threshold applies to
subsequent prefetch reads since all initial prefetch reads

RMFT/RXFT Subsequent Prefetch FIFO Threshold

00 0 Cache lines

01 1 Cache line

10 2 Cache lines

11 3 Cache lines

2-104 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 will be four cache lines. This field is only applicable if
read-ahead has been enabled. The encoding of this field is
shown in the table above.

WXFTx Write Any FIFO Threshold. This field is used by the
PHB to determine a FIFO threshold at which to start
writing data into local memory during any PCI write
transaction. Once the threshold is exceeded and the write
has begun, the PHB will continue to empty its FIFO until
it can no longer create a cache line. This field is only
applicable if write-posting has been enabled. The
encoding of this field is shown in the above table.

The PCI Slave Offset Registers (PSOFFx) contain offset information
associated with the mapping of PCI memory space to PPC memory space.
The field within the PSOFFx registers is defined as follows:

PSOFFx PCI Slave Offset. This register contains a 16-bit offset
that is added to the upper 16 bits of the PCI address to
determine the PPC address used for transfers from PCI to
the PPC bus. This offset allows PPC resources to reside at
addresses that would not normally be visible from PCI.

CONFIG_ADDRESS Register

The description of the CONFIG_ADDRESS register is presented in three
perspectives: from the PCI bus, from the PPC Bus in Big-Endian mode,
and from the PPC bus in Little-Endian mode. Note that the view from the
PCI bus is purely conceptual, since there is no way to access the
CONFIG_ADDRESS register from the PCI bus.

WXFT Write FIFO Threshold

00 4 Cache lines

01 3 Cache lines

10 2 Cache lines

11 1 Cache lines

Registers

http://www.motorola.com/computer/literature 2-105

2Conceptual perspective from the PCI bus:

Perspective from the PPC bus in Big Endian mode:

Perspective from the PPC bus in Little Endian mode:

Offset $CFB $CFA $CF9 $CF8

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name CONFIG_ADDRESS

E
N BUS DEV FUN REG

Operation R
/W R R/W R/W R/W R/W R R

Reset 1 $00 $00 $00 $0 $00 0 0

Offset $CF8 $CF9 $CFA $CFB

Bit (DH)
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name CONFIG_ADDRESS

REG DEV FUN BUS E
N

Operation R/W R R R/W R/W R/W R
/W R

Reset $00 0 0 $00 $0 $00 1 $00

Offset $CFC $CFD $CFE $CFF

Bit (DL)
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name CONFIG_ADDRESS

E
N BUS DEV FUN REG

Operation R
/W R R/W R/W R/W R/W R R

Reset 1 $00 $00 $00 $0 $00 0 0

2-106 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 The register fields are defined as follows:

REG Register Number. Configuration Cycles: Identifies a
target double word within a target’s configuration space.
This field is copied to the PCI AD bus during the address
phase of a Configuration cycle.

Special Cycles: This field must be written with all zeros.

FUN Function Number. Configuration Cycles: Identifies a
function number within a target’s configuration space.
This field is copied to the PCI AD bus during the address
phase of a Configuration cycle.

Special Cycles: This field must be written with all ones.

DEV Device Number. Configuration Cycles: Identifies a
target’s physical PCI device number. Refer to the section
on Generating PCI Cycles for a description of how this
field is encoded.

Special Cycles: This field must be written with all ones.

BUS Bus Number. Configuration Cycles: Identifies a targeted
bus number. If written with all zeros, a Type 0
Configuration Cycle will be generated. If written with any
value other than all zeros, then a Type 1 Configuration
Cycle will be generated.

Special Cycles: Identifies a targeted bus number. If
written with all zeros, a Special Cycle will be generated.
If written with any value other than all zeros, then a
Special Cycle translated into a Type 1 Configuration
Cycle will be generated.

EN Enable. Configuration Cycles: Writing a one to this bit
enables CONFIG_DATA to Configuration Cycle
translation. If this bit is a zero, subsequent accesses to
CONFIG_DATA will be passed though as I/O Cycles.

Special Cycles: Writing a one to this bit enables
CONFIG_DATA to Special Cycle translation. If this bit is
a zero, subsequent accesses to CONFIG_DATA will be
passed though as I/O Cycles.

Registers

http://www.motorola.com/computer/literature 2-107

2CONFIG_DATA Register

The description of the CONFIG_DATA register is also presented in three
perspectives; from the PCI bus, from the PPC Bus in Big Endian mode,
and from the PPC bus in Little Endian mode. Note that the view from the
PCI bus is purely conceptual, since there is no way to access the
CONFIG_DATA register from the PCI bus.Conceptual perspective from
the PCI bus:

Perspective from the PPC bus in Big Endian mode:

Perspective from the PPC bus in Little Endian mode:

Offset $CFF $CFE $CFD $CFC

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name CONFIG_DATA

Data ‘D’ Data ‘C’ Data ‘B’ Data ‘A’

Operation R/W R/W R/W R/W

Reset n/a n/a n/a n/a

Offset $CFC $CFD $CFE $CFF

Bit (DL)
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name CONFIG_DATA

Data ‘A’ Data ‘B’ Data ‘C’ Data ‘D’

Operation R/W R/W R/W R/W

Reset n/a n/a n/a n/a

Offset $CF8 $CF9 $CFA $CFB

Bit (DH)
0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Name CONFIG_DATA

Data ‘D’ Data ‘C’ Data ‘B’ Data ‘A’

Operation R/W R/W R/W R/W

Reset n/a n/a n/a n/a

2-108 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 MPIC Registers

The following conventions are used in the Hawk register charts:

❏ R - Read Only field.

❏ R/W - Read/Write field.

❏ S - Writing a ONE to this field sets this field.

❏ C - Writing a ONE to this field clears this field.

MPIC Registers

The MPIC register map is shown in Table 2-19. The Off field is the address
offset from the base address of the MPIC registers in the PPC-IO or PPC-
Memory space. Note that this map does not depict linear addressing. The
PCI-SLAVE of the PHB has two decoders for generating the MPIC select.
These decoders will generate a select and acknowledge all accesses which
are in a reserved 256K byte range. If the index into that 256K block does
not decode a valid MPIC register address, the logic will return $00000000.

The registers are 8, 16, or 32 bits accessible.

Table 2-19. MPIC Register Map

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Off

FEATURE REPORTING REGISTER 0 $01000

GLOBAL CONFIGURATION REGISTER 0 $01020

MPIC VENDOR IDENTIFICATION REGISTER $01080

PROCESSOR INIT REGISTER $01090

IPI0 VECTOR-PRIORITY REGISTER $010a0

IPI1 VECTOR-PRIORITY REGISTER $010b0

IPI2 VECTOR-PRIORITY REGISTER $010c0

IPI3 VECTOR-PRIORITY REGISTER $010d0

SP REGISTER $010e0

Registers

http://www.motorola.com/computer/literature 2-109

2

TIMER FREQUENCY REPORTING REGISTER $010f0

TIMER 0 CURRENT COUNT REGISTER $01100

TIMER 0 BASE COUNT REGISTER $01110

TIMER 0 VECTOR-PRIORITY REGISTER $01120

TIMER 0 DESTINATION REGISTER $01130

TIMER 1 CURRENT COUNT REGISTER $01140

TIMER 1 BASE COUNT REGISTER $01150

TIMER 1VECTOR-PRIORITY REGISTER $01160

TIMER 1DESTINATION REGISTER $01170

TIMER 2 CURRENT COUNT REGISTER $01180

TIMER 2 BASE COUNT REGISTER $01190

TIMER 2 VECTOR-PRIORITY REGISTER $011a0

TIMER 2 DESTINATION REGISTER $011b0

TIMER 3 CURRENT COUNT REGISTER $011c0

TIMER 3 BASE COUNT REGISTER $011d0

TIMER 3 VECTOR-PRIORITY REGISTER $011e0

TIMER 3 DESTINATION REGISTER $011f0

INT. SRC. 0 VECTOR-PRIORITY REGISTER $10000

INT. SRC. 0 DESTINATION REGISTER $10010

INT. SRC. 1 VECTOR-PRIORITY REGISTER $10020

INT. SRC. 1 DESTINATION REGISTER $10030

INT. SRC. 2 VECTOR-PRIORITY REGISTER $10040

INT. SRC. 2 DESTINATION REGISTER $10050

INT. SRC. 3 VECTOR-PRIORITY REGISTER $10060

INT. SRC. 3 DESTINATION REGISTER $10070

INT. SRC. 4 VECTOR-PRIORITY REGISTER $10080

INT. SRC. 4 DESTINATION REGISTER $10090

INT. SRC. 5 VECTOR-PRIORITY REGISTER $100a0

Table 2-19. MPIC Register Map (Continued)

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Off

2-110 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2

INT. SRC. 5 DESTINATION REGISTER $100b0

INT. SRC. 6 VECTOR-PRIORITY REGISTER $100c0

INT. SRC. 6 DESTINATION REGISTER $100d0

INT. SRC. 7 VECTOR-PRIORITY REGISTER $100e0

INT. SRC. 7 DESTINATION REGISTER $100f0

INT. SRC. 8 VECTOR-PRIORITY REGISTER $10100

INT. SRC. 8 DESTINATION REGISTER $10110

INT. SRC. 9 VECTOR-PRIORITY REGISTER $10120

INT. SRC. 9 DESTINATION REGISTER $10130

INT. SRC. 10 VECTOR-PRIORITY REGISTER $10140

INT. SRC. 10 DESTINATION REGISTER $10150

INT. SRC. 11 VECTOR-PRIORITY REGISTER $10160

INT. SRC. 11 DESTINATION REGISTER $10170

INT. SRC. 12 VECTOR-PRIORITY REGISTER $10180

INT. SRC. 12 DESTINATION REGISTER $10190

INT. SRC. 13 VECTOR-PRIORITY REGISTER $101a0

INT. SRC. 13 DESTINATION REGISTER $101b0

INT. SRC. 14 VECTOR-PRIORITY REGISTER $101c0

INT. SRC. 14 DESTINATION REGISTER $101d0

INT. SRC. 15 VECTOR-PRIORITY REGISTER $101e0

INT. SRC. 15 DESTINATION REGISTER $101f0

HAWK INTERNAL ERROR VECTOR-PRIORITY REGISTER $10200

HAWK INTERNAL ERROR DESTINATION REGISTER $10210

IPI 0 DISPATCH REGISTER PROC. 0 $20040

IPI 1 DISPATCH REGISTER PROC. 0 $20050

IPI 2 DISPATCH REGISTER PROC. 0 $20060

IPI 3 DISPATCH REGISTER PROC. 0 $20070

Table 2-19. MPIC Register Map (Continued)

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Off

Registers

http://www.motorola.com/computer/literature 2-111

2

Feature Reporting Register

CURRENT TASK PRIORITY REGISTER PROC. 0 $20080

IACK REGISTER
P0

$200a0

EOI REGISTER
P0

$200b0

IPI 0 DISPATCH REGISTER PROC. 1 $21040

IPI 1 DISPATCH REGISTER PROC. 1 $21050

IPI 2 DISPATCH REGISTER PROC. 1 $21060

IPI 3 DISPATCH REGISTER PROC. 1 $21070

CURRENT TASK PRIORITY REGISTER PROC. 1 $21080

IACK REGISTER
P1

$210a0

EOI REGISTER
P1

$210b0

Offset $01000

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name FEATURE REPORTING

NIRQ NCPU VID

Operation R R R R R

Reset $0 $00F $0 $01 $03

Table 2-19. MPIC Register Map (Continued)

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Off

2-112 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 NIRQ NUMBER OF IRQs. The number of the highest external
IRQ source supported. The IPI, Timer, and PHB Detected
Error interrupts are excluded from this count.

NCPU NUMBER OF CPUs. The number of the highest physical
CPU supported. There are two CPUs supported by this
design. CPU #0 and CPU #1.

VID VERSION ID. Version ID for this interrupt controller.
This value reports what level of the specification is
supported by this implementation. Version level of 02 is
used for the initial release of the MPIC specification.

Global Configuration Register

RESET RESET CONTROLLER. Writing a one to this bit forces
the controller logic to be reset. This bit is cleared
automatically when the reset sequence is complete. While
this bit is set, the values of all other register are undefined.

EINTT External Interrupt Type. This read only bit indicates the
external interrupt type: serial or parallel mode. When this
bit is set MPIC is in serial mode for external interrupts 0
through 15. When this bit is cleared MPIC is in parallel
mode for external interrupts.

Offset $01020

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name GLOBAL CONFIGURATION

R
E

S
E

T
E

IN
T

T
M T

IE
Operation

C R R
/W

R
/W R R R R

Reset 0 0 0 0 $00 $00 $00 $00

Registers

http://www.motorola.com/computer/literature 2-113

2M CASCADE MODE. Allows cascading of an external
8259 pair connected to the first interrupt source input pin
(0). In the pass through mode, interrupt source 0 is passed
directly through to the processor 0 INT pin. MPIC is
essentially disabled. In the mixed mode, 8259 interrupts
are delivered using the priority and distribution
mechanism of the MPIC. The Vector/Priority and
Destination registers for interrupt source 0 are used to
control the delivery mode for all 8259 generated interrupt
sources.

TIE Tie Mode. Writing a one to this register bit will cause a
tie in external interrupt processing to swap back and forth
between processor 0 and 1. The first tie in external
interrupt processing always goes to Processor 0 after a
reset. When this register bit is set to 0, a tie in external
interrupt processing will always go to processor 0 (Mode
used on Version $02 of MPIC).

Table 2-20. Cascade Mode Encoding

M Mode

0 Pass Through

1 Mixed

Table 2-21. Tie Mode Encoding

T Mode

0 Processor 0 always selected

1 Swap between Processor’s

2-114 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Vendor Identification Register

There are two fields in the Vendor Identification Register which are not
defined for the MPIC implementation but are defined in the MPIC
specification. They are the vendor identification and device ID fields.

STP STEPPING.The stepping or silicon revision number of
Hawk’s MPIC.

Processor Init Register

P1 PROCESSOR 1. Writing a 1 to P1 will assert the Soft
Reset input of processor 1. Writing a 0 to it will negate the
SRESET signal.

P0 PROCESSOR 0. Writing a 1 to P0 will assert the Soft
Reset input of processor 0. Writing a 0 to it will negate the
SRESET signal.

The Soft Reset input to the 604 is negative edge-sensitive.

Offset $01080

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name VENDOR IDENTIFICATION

STP

Operation R R R R

Reset $00 $00 $00 $00

Offset $01090

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name PROCESSOR INIT

P1 P0

Operation R R R R

R
/W

R
/W

Reset $00 $00 $00 $00 0 0

Registers

http://www.motorola.com/computer/literature 2-115

2IPI Vector/Priority Registers

MASK MASK. Setting this bit disables any further interrupts
from this source. If the mask bit is cleared while the bit
associated with this interrupt is set in the IPR, the interrupt
request will be generated.

ACT ACTIVITY. The activity bit indicates that an interrupt
has been requested or that it is in-service. The ACT bit is
set to a one when its associated bit in the Interrupt Pending
Register or In-Service Register is set.

PRIOR PRIORITY. Interrupt priority 0 is the lowest and 15 is
the highest. Note that a priority level of 0 will not enable
interrupts.

VECTOR VECTOR. This vector is returned when the Interrupt
Acknowledge register is examined during a request for
the interrupt associated with this vector.

Offset IPI 0 - $010A0
IPI 1 - $010B0
IPI 2 - $010C0
IPI 3 - $010D0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name IPI VECTOR/PRIORITY

M
A

S
K

A
C

T

PRIOR VECTOR

Operation R
/W

R R R/W R R/W

Reset 1 0 $000 $0 $00 $00

2-116 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Spurious Vector Register

VECTOR This vector is returned when the Interrupt Acknowledge
register is read during a spurious vector fetch.

Timer Frequency Register

This register is used to report the frequency (in Hz) of the clock source for
the global timers. Following reset, this register contains zero. The system
initialization code must initialize this register to one-eighth the MPIC
clock frequency. For the PHB implementation of the MPIC, a typical value
would be $7de290 (which is 66/8 MHz or 8.25 MHz).

Offset $010E0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name VECTOR

Operation R R R R/W

Reset $00 $00 $00 $FF

Offset $010F0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name TIMER FREQUENCY

Operation R/W

Reset $00000000

Registers

http://www.motorola.com/computer/literature 2-117

2Timer Current Count Registers

T TOGGLE. This bit toggles whenever the current count
decrements to zero. The bit is cleared when a value is
written into the corresponding base register and the CI bit
of the corresponding base register transitions from a 1 to
a 0.

CC CURRENT COUNT. The current count field decrements
while the Count Inhibit bit is the Base Count Register is
zero. When the timer counts down to zero, the Current
Count register is reloaded from the Base Count register
and the timer’s interrupt becomes pending in MPIC
processing.

Offset Timer 0 - $01100
Timer 1 - $01140
Timer 2 - $01180
Timer 3 - $011C0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name TIMER CURRENT COUNT

T CC

Operation R R

Reset 0 $00000000

2-118 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Timer Basecount Registers

CI COUNT INHIBIT. Setting this bit to one inhibits
counting for this timer. Setting this bit to zero allows
counting to proceed.

BC BASE COUNT. This field contains the 31 bit count for
this timer. When a value is written into this register and
the CI bit transitions from a 1 to a 0, it is copied into the
corresponding Current Count register and the toggle bit in
the Current Count register is cleared. When the timer
counts down to zero, the Current Count register is
reloaded from the Base Count register and the timer’s
interrupt becomes pending in MPIC processing.

Offset Timer 0 - $01110
Timer 1 - $01150
Timer 2 - $01190
Timer 3 - $011D0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name TIMER BASECOUNT

C
I BC

Operation R
/W R/W

Reset 1 $00000000

Registers

http://www.motorola.com/computer/literature 2-119

2Timer Vector/Priority Registers

MASK MASK. Setting this bit disables any further interrupts
from this source. If the mask bit is cleared while the bit
associated with this interrupt is set in the IPR, the interrupt
request will be generated.

ACT ACTIVITY. The activity bit indicates that an interrupt
has been requested or that it is in-service. The ACT bit is
set to a one when its associated bit in the Interrupt Pending
Register or In-Service Register is set.

PRIOR PRIORITY. Interrupt priority 0 is the lowest and 15 is
the highest. Note that a priority level of 0 will not enable
interrupts.

VECTOR VECTOR. This vector is returned when the Interrupt
Acknowledge register is examined upon acknowledgment
of the interrupt associated with this vector.

Offset Timer 0 - $01120
Timer 1 - $01160
Timer 2 - $011A0
Timer 3 - $011E0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name TIMER VECTOR/PRIORITY

M
A

S
K

A
C

T

PRIOR VECTOR

Operation R
/W

R R R/W R R/W

Reset 1 0 $000 $0 $00 $00

2-120 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Timer Destination Registers

This register indicates the destinations for this timer’s interrupts. Timer
interrupts operate in the Directed delivery interrupt mode. This register
may specify multiple destinations (multicast delivery).

P1 PROCESSOR 1. The interrupt is directed to processor 1.

P0 PROCESSOR 0. The interrupt is directed to processor 0.

External Source Vector/Priority Registers

Offset Timer 0 - $01130
Timer 1 - $01170
Timer 2 - $011B0
Timer 3 - $011F0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name TIMER DESTINATION

P
1

P
0

Operation R R R R R
/W

R
/W

Reset $00 $00 $00 $00 0 0

Offset Int Src 0 - $10000
Int Src 1-> Int Src15 - $10020 -> $101E0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name EXTERNAL SOURCE VECTOR/PRIORITY

M
A

SK
A

C
T

P
O

L
S

E
N

SE

PRIOR VECTOR

Operation R
/W

R R R
/W

R
/W

R R R/W R R/W

Reset 1 0 $000 0 0 0 0 $0 $00 $00

Registers

http://www.motorola.com/computer/literature 2-121

2MASK MASK. Setting this bit disables any further interrupts
from this source. If the mask bit is cleared while the bit
associated with this interrupt is set in the IPR, the interrupt
request will be generated.

ACT ACTIVITY. The activity bit indicates that an interrupt
has been requested or that it is in-service. The ACT bit is
set to a one when its associated bit in the Interrupt Pending
Register or In-Service Register is set.

POL POLARITY. This bit sets the polarity for external
interrupts. Setting this bit to zero enables active low or
negative-edge. Setting this bit to one enables active high
or positive-edge. Only External Interrupt Source 0 uses
this bit in this register. For external interrupts 1 through
15, this bit is hard-wired to 0.

SENSE SENSE. This bit sets the sense for external interrupts.
Setting this bit to zero enables edge sensitive interrupts.
Setting this bit to one enables level sensitive interrupts.
For external interrupt sources 1 through 15, setting this bit
to zero enables positive edge triggered interrupts. Setting
this bit to one enables active low level triggered interrupts.

PRIOR PRIORITY. Interrupt priority 0 is the lowest and 15 is
the highest. Note that a priority level of 0 will not enable
interrupts.

VECTOR VECTOR. This vector is returned when the Interrupt
Acknowledge register is examined upon acknowledgment
of the interrupt associated with this vector.

2-122 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 External Source Destination Registers

This register indicates the possible destinations for the external interrupt
sources. These interrupts operate in the Distributed interrupt delivery
mode.

P1 PROCESSOR 1. The interrupt is pointed to processor 1.

P0 PROCESSOR 0. The interrupt is pointed to processor 0.

Offset Int Src 0 - $10010
Int Src 1-> Int Src 15 - $10030 -> $101F0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name EXTERNAL SOURCE DESTINATION

P
1

P
0

Operation R R R R R
/W

R
/W

Reset $00 $00 $00 $00 0 0

Registers

http://www.motorola.com/computer/literature 2-123

2Hawk Internal Error Interrupt Vector/Priority Register

MASK MASK. Setting this bit disables any further interrupts
from this source. If the mask bit is cleared, while the bit
associated with this interrupt is set in the IPR, the interrupt
request will be generated.

ACT ACTIVITY. The activity bit indicates that an interrupt
has been requested or that it is in-service. The ACT bit is
set to one when its associated bit in the Interrupt Pending
Register or In-Service Register is set.

SENSE SENSE. This bit sets the sense for Hawk’s internal error
interrupt. It is hardwired to 1 to enable active low level
sensitive interrupts.

PRIOR PRIORITY. Interrupt priority 0 is the lowest and 15 is
the highest. Note that a priority level of 0 will not enable
interrupts.

VECTOR VECTOR. This vector is returned when the Interrupt
Acknowledge register is examined upon acknowledgment
of the interrupt associated with this vector.

Offset $10200

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name HAWK INTERNAL ERROR INTERRUPT VECTOR/PRIORITY

M
A

S
K

A
C

T

S
E

N
SE

PRIOR VECTOR

Operation R
/W

R R R R R R R/W R R/W

Reset 1 0 $000 0 1 0 0 $0 $00 $00

2-124 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 Hawk Internal Error Interrupt Destination Register

This register indicates the possible destinations for the Hawk internal error
interrupt source. These interrupts operate in the Distributed interrupt
delivery mode.

P1 PROCESSOR 1. The interrupt is pointed to processor 1.

P0 PROCESSOR 0. The interrupt is pointed to processor 0.

Interprocessor Interrupt Dispatch Registers

There are four Interprocessor Interrupt Dispatch Registers. Writing to an
IPI Dispatch Register with the P0 and/or P1 bit set causes an interprocessor
interrupt request to be sent to one or more processors. Note that each IPI
Dispatch Register has two addresses. These registers are considered to be
per processor registers and there is one address per processor. Reading
these registers returns zeros.

P1 PROCESSOR 1. The interrupt is directed to processor 1.

P0 PROCESSOR 0. The interrupt is directed to processor 0.

Offset $10210

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name HAWK INTERNAL ERROR INTERRUPT DESTINATION

P
1

P
0

Operation R R R R R
/W

R
/W

Reset $00 $00 $00 $00 0 0

Offset Processor 0 $20040, $20050, $20060, $20070
Processor 1 $21040, $21050,$21060, $21070

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name IPI DISPATCH

P
1

P
0

Operation R R R R W W

Reset $00 $00 $00 $00 0 0

Registers

http://www.motorola.com/computer/literature 2-125

2Current Task Priority Registers

There is one Task Priority Register per processor. Priority levels from 0
(lowest) to 15 (highest) are supported. Setting the Task Priority Register to
15 masks all interrupts to this processor. Hardware will set the task register
to $F when it is reset or when the Init bit associated with this processor is
written to a one.

TP Task Priority of processor.

Interrupt Acknowledge Registers

On PowerPC-based systems, Interrupt Acknowledge is implemented as a
read request to a memory-mapped Interrupt Acknowledge register.
Reading the Interrupt Acknowledge register returns the interrupt vector
corresponding to the highest priority pending interrupt. Reading this
register also has the following side effects. Reading this register without a
pending interrupt will return a value of $FF hex.

❏ The associated bit in the Interrupt Pending Register is cleared.

❏ Reading this register will update the In-Service register.

VECTOR Vector. This vector is returned when the Interrupt
Acknowledge register is read.

Offset Processor 0 $20080
Processor 1 $21080

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name CURRENT TASK PRIORITY

TP

Operation R R R R R/W

Reset $00 $00 $00 $0 $F

Offset Processor 0 $200A0
Processor 1 $210A0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name VECTOR

Operation R R R R

Reset $00 $00 $00 $FF

2-126 Computer Group Literature Center Web Site

Hawk PCI Host Bridge & Multi-Processor Interrupt Controller

2 End-of-Interrupt Registers

EOI END OF INTERRUPT. There is one EOI register per
processor. EOI Code values other than 0 are currently
undefined. Data values written to this register are ignored;
zero is assumed. Writing to this register signals the end of
processing for the highest priority interrupt currently in
service by the associated processor. The write operation
will update the In-Service register by retiring the highest
priority interrupt. Reading this register returns zeros.

Offset Processor 0 $200B0
Processor 1 $210B0

Bit 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Name EOI

Operation R R R R W

Reset $00 $00 $00 $0 $0

3-1

33System Memory Controller
(SMC)

Introduction
The SMC in the Hawk ASIC is equivalent to the former Falcon Pair
portion of a Falcon/Raven chipset. The SMC has interfaces between the
PPC60x bus and SDRAM, ROM/Flash, and its Control and Status Register
sets (CSR). Note that the term SDRAM refers to Synchronous Dynamic
Random Access Memory and is used throughout this document.

Overview
This chapter provides a functional description and programming model for
the SMC portion of the Hawk. Most of the information for using the device
in a system, programming it in a system, and testing it, is contained here.

Bit Ordering Convention
All SMC bused signals are named using Big-Endian bit ordering (bit 0 is
the most significant bit), except for the RA signals, which use Little-
Endian bit ordering (bit 0 is the least significant bit).

Features
❏ SDRAM Interface

– Double-bit error detect/Single-bit error correct on 72-bit basis.

– Two blocks with up to 256MB each at 100 MHz.

– Eight blocks with up to 256MB each at 66.67 MHz

– Uses -8, -10, or PC100 SDRAMs

– Programmable base address for each block.

– Built-in Refresh/Scrub.

❏ Error Notification for SDRAM

– Software programmable Interrupt on Single/Double-Bit Error.

– Error address and Syndrome Log Registers for Error Logging.

– Does not provide TEA_ on Double-Bit Error. (Chip has no
TEA_ pin.)

3-2 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

❏ ROM/Flash Interface

– Two blocks with each block being 16 or 64 bits wide.

– Programmable access time on a per-block basis.

❏ I2C master interface.

❏ External status/control register support

Block Diagrams
Figure 3-1 depicts a Hawk as it would be connected with SDRAMs in a
system. Figure 3-2 shows the SMC’s internal data paths. Figure 3-3 shows
the overall SDRAM connections. Figure 3-4 shows a block diagram of the
SMC portion of the Hawk ASIC.

Figure 3-1. Hawk Used with Synchronous DRAM in a System

P
P

C
60

x
B

u
s

DRAM
Synch

HAWK

Check

Data

PowerPC
Data (64 Bits)

PowerPC

SDRAM
Data (64 Bits)

SDRAM
Address & Control

SDRAM
Check Bits (8 Bits)

Address &Control

PowerPC
Data Parity (8 Bits)

PowerPC

Address Parity (4 bits)

Block Diagrams

http://www.motorola.com/computer/literature 3-3

3

Figure 3-2. Hawk’s System Memory Controller Internal Data Paths

C
K

D
[0

:7
]

R
D

[0
:6

3]

D
[0

:6
3]

LA
TC

H
ES

H
A

M
G

EN

SY
N

D
EC

M
U

X

H
A

M
G

EN

C
or

re
ct

ed
 D

at
a

Uncorrected Data
(64 Bits)

SDRAMPowerPC
Side Side

+

+

D
FF

’s Latched D

(6
4

B
its

)

(64 Bits)

(8 Bits)

(8 Bits)

(8 Bits)

(6
4

B
its

)

(64 Bits)

(8 Bits)

LA
TC

H
ES

D
P[

0:
7]

PA
R

C
H

K

PA
R

G
EN

3-4 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Figure 3-3. Overall SDRAM Connections (4 Blocks using Register Buffers)

H
A

W
K

SDRAM
BLOCK A

SDRAM
BLOCK B

SDRAM
BLOCK C

SDRAM
BLOCK D

RD0-63

CKD0-7

D0/D1_CS_

C0/C1_CS_

BA,RA,RAS_,

A0/A1_CS_

B0/B1_CS_

CAS_,WE_,DQM

Block Diagrams

http://www.motorola.com/computer/literature 3-5

3

Figure 3-4. Hawk’s System Memory Controller Block Diagram

SDRAM

SDRAM

DATA

JTAG

PPC60x Data MEM Data

MEM Addr

PPC60x Addr

PPC60x Attr

PPC60x Ctrl MEM Ctrl
&

ROM/Flash
CONTROL

SDRAM
ADDRESS

MULTIPLEXOR

PPC60x

STATUS
/CONTROL

REGISTERS

MULTIPLEXOR

ADDRESS
DECODER

PPC60x
SLAVE

INTERFACE

ERROR
LOGGER

I2C
INTERFACE

I2C Bus

ARBITER

REFRESHER
/SCRUBBER

3-6 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Functional Description
The following sections describe the logical function of the SMC. The SMC
has interfaces between the PowerPC bus and SDRAM, ROM/Flash, and its
control and status register sets (CSR).

SDRAM Accesses

Four-beat Reads/Writes

The SMC performs best when doing bursting (4-beat accesses). This is
made possible by the burst nature of synchronous DRAMs. When the
PPC60x master begins a burst read to SDRAM, the SMC starts the access
and when the access time is reached, the SDRAM provides all four beats
of data, one on each clock. Hence, the SMC can provide the four beats of
data with zero idle clocks between each beat.

Single-beat Reads/Writes

Because of start-up, addressing, and completion overhead, single-beat
accesses to and from the PPC60x bus do not achieve data rates as high as
do four-beat accesses. Single-beat writes are the slowest because they
require that the SMC perform a read cycle then a write cycle to the
SDRAM in order to complete. Fortunately, in most PPC60x systems,
single-beat accesses can be held to a minimum, especially with data cache
and copyback modes in place.

Address Pipelining

The SMC takes advantage of the fact that PPC60x processors can do
address pipelining. Many times while a data cycle is finishing, the PPC60x
processor begins a new address cycle. The SMC can begin the next
SDRAM access earlier when this happens, thus increasing throughput.

Functional Description

http://www.motorola.com/computer/literature 3-7

3

Page Holding

Further savings comes when the new address is close enough to a previous
one that it falls within an open page in the SDRAM array. When this
happens, the SMC can transfer the data for the next cycle without having
to wait to activate a new page in SDRAM. In the SMC this feature is
referred to as page holding.

SDRAM Speeds

The SDRAM that the Hawk ASIC controls use the 60x clock. The SMC
can be configured to operate at several different 60x clock frequencies
using SDRAMs that have various speed characteristics. The bits that
control this configuration are located in the SDRAM Speed Attributes
Register, which is described in the Register portion of this section. Refer
to Table 3-1 for some specific timing numbers.

Table 3-1. 60x Bus to SDRAM Estimated Access Timing at 100 MHz with PC100
SDRAMs (CAS_latency of 2)

Access Type Access Time Comments

4-Beat Read after idle,

SDRAM Bank Inactive

10-1-1-1

4-Beat Read after idle,

SDRAM Bank Active - Page Miss

12-1-1-1

4-Beat Read after idle,

SDRAM Bank Active - Page Hit

7-1-1-1

4-Beat Read after 4-Beat Read,

SDRAM Bank Active - Page Miss

5-1-1-1

4-Beat Read after 4-Beat Read,

SDRAM Bank Active - Page Hit

2.5-1-1-1 2.5-1-1-1 is an average of 2-
1-1-1 half of the time and 3-
1-1-1 the other half.

4-Beat Write after idle,

SDRAM Bank Active or Inactive

4-1-1-1

4-Beat Write after 4-Beat Write,

SDRAM Bank Active - Page Miss

6-1-1-1

3-8 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Notes 1. SDRAM speed attributes are programmed for the
following: CAS_latency = 2, tRCD = 2 CLK Periods, tRP =
2CLK Periods, tRAS = 5 CLK Periods, tRC = 7 CLK
Periods, tDP = 2 CLK Periods, and the swr dpl bit is set in
the SDRAM Speed Attributes Register.

2. The Hawk is configured for “no external registers” on the
SDRAM control signals.

4-Beat Write after 4-Beat Write,

SDRAM Bank Active - Page Hit

3-1-1-1 3-1-1-1 for the second burst
write after idle.

2-1-1-1 for subsequent burst
writes.

1-Beat Read after idle,

SDRAM Bank Inactive
10

1-Beat Read after idle,

SDRAM Bank Active - Page Miss
12

1-Beat Read after idle,

SDRAM Bank Active - Page Hit
7

1-Beat Read after 1-Beat Read,

SDRAM Bank Active - Page Miss
8

1-Beat Read after 1-Beat Read,

SDRAM Bank Active - Page Hit
5

1-Beat Write after idle,

SDRAM Bank Active or Inactive
5

1-Beat Write after 1-Beat Write,

SDRAM Bank Active - Page Miss
13

1-Beat Write after 1-Beat Write,

SDRAM Bank Active - Page Hit
8

Table 3-1. 60x Bus to SDRAM Estimated Access Timing at 100 MHz with PC100
SDRAMs (CAS_latency of 2) (Continued)

Access Type Access Time Comments

Functional Description

http://www.motorola.com/computer/literature 3-9

3

SDRAM Organization

The SDRAM is organized as 1, 2, 3, 4, 5, 6, 7, or 8 blocks, 72 bits wide
with 64 of the bits being normal data and the other 8 being checkbits. The
72 bits of SDRAM for each block can be made up of x4, x8, or x16
components or of 72-bit DIMMs that are made up of x4 or x8 components.
The 72-bit, unbuffered DIMMs can be used as long as AC timing is met
and they use the components listed. All components must be organized
with 4 internal banks.

PPC60x Bus Interface

The SMC has a PowerPC slave interface only. It has no PowerPC master
interface. The slave interface is the mechanism for all accesses to
SDRAM, ROM/Flash, and the internal and external register sets.

Responding to Address Transfers

When the SMC detects an address transfer that it is to respond to, it asserts
AACK_ immediately if there is no uncompleted PPC60x bus data transfer
in process. If there is one in process, then the SMC waits and asserts
AACK_ coincident with the uncompleted data transfer’s last data beat if
the SMC is the slave for the previous data. If it is not, it holds off AACK_
until the CLK after the previous data transfer’s last data beat.

Completing Data Transfers

If an address transfer to the SMC will have an associated data transfer, the
SMC begins a read or write cycle to the accessed entity
(SDRAM/ROM/Flash/Internal or External Register) as soon as the entity
is free. If the data transfer will be a read, the SMC begins providing data
to the PPC60x bus as soon as the entity has data ready and the PPC60x data
bus is granted. If the data transfer will be a write, the SMC begins latching
data from the PowerPC data bus as soon as any previously latched data is
no longer needed and the PPC60x data bus is available.

3-10 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

PPC60x Data Parity

The Hawk has 8 DP pins for generating and checking PPC60x data bus
parity.

During read cycles that access the SMC, the Hawk generates the correct
value on DP0-DP7 so that each data byte lane along with its corresponding
DP signal has odd parity. This can be changed on a lane basis to even parity
by software bits that can force the generation of wrong (even) parity.

During write cycles to the SMC, the SMC checks each of the eight PPC60x
data byte lanes and its corresponding DP signal for odd parity. If any of the
eight lanes has even parity, the SMC logs the error in the CSR and can
generate a machine check if so enabled.

While normal (default) operation is for the SMC to check data parity only
on writes to it, it can be programmed to check data parity on all reads or
writes to any device on the PPC bus.

Refer to the Data Parity Error Log Register section further on in this
document for additional control register details.

PPC60x Address Parity

The Hawk has four AP pins for generating and checking PPC60x address
bus parity.

During any address transfer cycle on the PPC60x, the SMC checks each of
the four 8-bit PPC60x address lanes and its corresponding AP signal for
odd parity. If any of the four lanes has even parity, the SMC logs the error
in the CSR and can generate a machine check if so enabled.

Note that the SMC does not generate address parity because it is not a
PPC60x address master.

Refer to the Address Parity Error Log Register section further on in this
document for additional control register details.

Functional Description

http://www.motorola.com/computer/literature 3-11

3

Cache Coherency

The SMC supports cache coherency to SDRAM only. It does this by
monitoring the ARTRY_ control signal on the PPC60x bus and behaving
appropriately when it is asserted. When ARTRY_ is asserted, if the access
is a SDRAM read, the SMC does not source the data for that access. If the
access is a SDRAM write, the SMC does not write the data for that access.
Depending upon when the retry occurs, the SMC may cycle the SDRAM
even though the data transfer does not happen.

Cache Coherency Restrictions

The PPC60x GBL_ signal must not be asserted in the CSR areas.

L2 Cache Support

The SMC provides support for a look-aside L2 cache (only at 66.67 MHz)
by implementing a hold-off input, L2CLM_. On cycles that select the
SMC, the SMC samples L2CLM_ on the second rising edge of the CLK
input after the assertion of TS_. If L2CLM_ is high, the SMC responds
normally to the cycle. If it is low, the SMC ignores the cycle.

SDRAM ECC

The SMC performs single-bit error correction and double-bit error
detection for SDRAM across 64 bits of data using 8 check bits. No
checking is provided for ROM/Flash.

Cycle Types

To support ECC, the SMC always deals with SDRAM using full width
(72-bit) accesses. When the PPC60x bus master requests any size read of
SDRAM, the SMC reads the full width at least once. When the PPC60x
bus master requests a four-beat write to SDRAM, the SMC writes all 72
bits four times. When the PPC60x bus master requests a single-beat write
to SDRAM, the SMC performs a full width read cycle to SDRAM, merges
in the appropriate PPC60x bus write data, and writes full width back to
SDRAM.

3-12 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Error Reporting

The SMC checks data from the SDRAM during single- and four-beat reads,
during single-beat writes, and during scrubs. Table 3-2 shows the actions it
takes for different errors during these accesses 60x.

Note that the SMC does not assert TEA_ on double-bit errors. In fact, the
SMC does not have a TEA_ signal pin and it assumes that the system does
not implement TEA_. The SMC can, however, assert machine check
(MCHK0_) on double-bit error.

Table 3-2. Error Reporting

Error Type
Single-Beat/Four-

Beat Read
Single-Beat Write Four-Beat Write Scrub

Single-Bit
Error

Terminate the
PPC60x bus cycle nor-
mally.

Provide corrected data to
the PPC60x bus master.

Assert Hawk’s internal
error interrupt, if so
enabled. 2

Terminate the
PPC60x bus cycle nor-
mally.

Correct the data read
from SDRAM, merge
with the write data, and
write the corrected,
merged data to SDRAM.

Assert Hawk’s internal
error interrupt, if so
enabled. 2

N/A 1

This cycle is not seen on
the PPC60x bus.

Write corrected data
back to SDRAM if so
enabled.

Assert Hawk’s internal
error interrupt, if so
enabled. 2

Double-Bit
Error

Terminate the
PPC60x bus cycle nor-
mally.

Provide miss-corrected,
raw SDRAM data to the
PPC60x60x bus master.

Assert Hawk’s internal
error interrupt, if so
enabled. 2

Assert MCHK0_ if so
enabled.

Terminate the
PPC60x bus cycle nor-
mally.

Do not perform the write
portion of the read-mod-
ify-write cycle to
SDRAM.

Assert Hawk’s internal
error interrupt, if so
enabled. 2

Assert MCHK0_ if so
enabled.

N/A 1

This cycle is not seen on
the PPC60x bus.

Do not perform the
write portion of the
read-modify-write cycle
to SDRAM.

Assert Hawk’s internal
error interrupt if so
enabled. 2

Triple- (or
greater)
Bit Error

Some of these errors are detected correctly and are treated the same as double-bit errors. The rest could
show up as “no error” or “single-bit error”, both of which are incorrect.

Functional Description

http://www.motorola.com/computer/literature 3-13

3

Notes 1. No opportunity for error since no read of SDRAM occurs
during a four-beat write.

2. The SMC asserts Hawk’s internal error interrupt output upon
detecting an interrupt-qualified error condition. The potential
sources of Hawk’s internal error interrupt assertion are single-bit
error, multiple-bit error, and single-bit error counter overflow.

Error Logging

ECC error logging is facilitated by the SMC because of its internal latches.
When an error (single- or double-bit) occurs, the SMC records the address
and syndrome bits associated with the data in error. Once the error logger
has logged an error, it does not log any more until the elog control /status
bit has been cleared by software, unless the currently logged error is
single-bit and a new, double-bit error is encountered. The logging of errors
that occur during scrub can be enabled/disabled in software. Refer to the
Error Logger Register section in this chapter for more information.

3-14 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

ROM/Flash Interface

The SMC provides the interface for two blocks of ROM/Flash. Each block
provides addressing and control for up to 64Mbytes. Note that no ECC
error checking is provided for the ROM/Flash.

The ROM/Flash interface allows each block to be individually configured
by jumpers and/or by software as follows:

1. Access for each block is controlled by three software programmable
control register bits: an overall enable, a write enable, and a reset
vector enable. The overall enable controls normal read accesses.
The write enable is used to program Flash devices. The reset vector
enable controls whether the block is also enabled at $FFF00000 -
$FFFFFFFF. The overall enable and write enable bits are always
cleared at reset. The reset vector enable bit is cleared or set at reset
depending on external jumper configuration. This allows the board
designer to use external jumpers to enable/disable Block A/B
ROM/Flash as the source of reset vectors.

2. The base address for each block is software programmable. At reset,
Block A’s base address is $FF000000, if Bank A is less than or
equal to 8MBytes; otherwise, it is 0xF4000000. Block B’s base
address is $FF800000.

As noted above, in addition to appearing at the programmed base
address, the first 1Mbyte of Block A/B also appears at $FFF00000-
$FFFFFFFF if the reset vector enable bit is set.

3. The assumed size for each block is software programmable. It is
initialized to its smallest setting at reset.

4. The access time for each block is software programmable.

5. The assumed width for Block A/B is determined by an external
jumper at reset time. It also is available as a status bit and cannot be
changed by software.

Functional Description

http://www.motorola.com/computer/literature 3-15

3

When the width status bit is cleared, the block’s ROM /Flash is
considered to be 16 bits wide, where each half of the SMC interfaces
to 8 bits. In this mode, the following rules are enforced:

a. only single-byte writes are allowed (all other sizes are ignored),
and

b. all reads are allowed (multiple accesses are performed to the
ROM/Flash devices when the read is for greater than one byte).

When the width status bit is set, the block’s ROM/Flash is
considered to be 64 bits wide, where each half of the SMC interfaces
with 32 bits. In this mode, the following rules are enforced:

a. only aligned, 4-byte writes should be attempted (all other sizes
are ignored), and

b. all reads are allowed (multiple accesses to the ROM/Flash
device are performed for burst reads).

More information about ROM/Flash is found in the section on SMC
Registers in this chapter.

In order to place code correctly in the ROM/Flash devices, address
mapping information is required. Table 3-3 shows how PPC60x addresses
map to the ROM/Flash addresses when ROM/Flash is 16 bits wide. Table
3-4 shows how they map when Flash is 64 bits wide.

3-16 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Table 3-3. PPC60x to ROM/Flash (16 Bit Width)
Address Mapping

PPC60x A0-A31 ROM/Flash A22-A0 ROM/Flash Device Selected

$XX000000 $000000 Upper

$XX000001 $000001 Upper

$XX000002 $000002 Upper

$XX000003 $000003 Upper

$XX000004 $000000 Lower

$XX000005 $000001 Lower

$XX000006 $000002 Lower

$XX000007 $000003 Lower

$XX000008 $000004 Upper

$XX000009 $000005 Upper

$XX00000A $000006 Upper

$XX00000B $000007 Upper

$XX00000C $000004 Lower

$XX00000D $000005 Lower

$XX00000E $000006 Lower

$XX00000F $000007 Lower

.

.

.

.

.

.

.

.

.

$XXFFFFF8 $7FFFFC Upper

$XXFFFFF9 $7FFFFD Upper

$XXFFFFFA $7FFFFE Upper

$XXFFFFFB $7FFFFF Upper

$XXFFFFFC $7FFFFC Lower

$XXFFFFFD $7FFFFD Lower

$XXFFFFFE $7FFFFE Lower

$XXFFFFFF $7FFFFF Lower

Functional Description

http://www.motorola.com/computer/literature 3-17

3

Table 3-4. PPC60x to ROM/Flash (64 Bit Width)
Address Mapping (Continued)

PPC60x A0-A31 ROM/Flash A22-A0 ROM/Flash Device Selected

$X0000000 $000000 Upper

$X0000001 $000000 Upper

$X0000002 $000000 Upper

$X0000003 $000000 Upper

$X0000004 $000000 Lower

$X0000005 $000000 Lower

$X0000006 $000000 Lower

$X0000007 $000000 Lower

$X0000008 $000001 Upper

$X0000009 $000001 Upper

$X000000A $000001 Upper

$X000000B $000001 Upper

$X000000C $000001 Lower

$X000000D $000001 Lower

$X000000E $000001 Lower

$X000000F $000001 Lower

.

.

.

.

.

.

.

.

.

$X3FFFFF0 $7FFFFE Upper

$X3FFFFF1 $7FFFFE Upper

$X3FFFFF2 $7FFFFE Upper

$X3FFFFF3 $7FFFFE Upper

$X3FFFFF4 $7FFFFE Lower

$X3FFFFF5 $7FFFFE Lower

$X3FFFFF6 $7FFFFE Lower

$X3FFFFF7 $7FFFFE Lower

$X3FFFFF8 $7FFFFF Upper

$X3FFFFF9 $7FFFFF Upper

3-18 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3 $X3FFFFFA $7FFFFF Upper

$X3FFFFFB $7FFFFF Upper

$X3FFFFFC $7FFFFF Lower

$X3FFFFFD $7FFFFF Lower

$X3FFFFFE $7FFFFF Lower

$X3FFFFFF $7FFFFF Lower

Table 3-4. PPC60x to ROM/Flash (64 Bit Width)
Address Mapping (Continued)

PPC60x A0-A31 ROM/Flash A22-A0 ROM/Flash Device Selected

Functional Description

http://www.motorola.com/computer/literature 3-19

3

ROM/Flash Speeds

The SMC provides the interface for two blocks of ROM/Flash. Access
times to ROM/Flash are programmable for each block. Access times are
also affected by block width. Refer to Table 3-5, Table 3-6, Table 3-7, and
Table 3-8 for specific timing numbers.

Note The information in Table 3-5 applies to access timing when
configured for devices with an access time equal to 12 clock
periods.

Table 3-5. PPC60x Bus to ROM/Flash Access Timing
(120ns @ 100 MHz)

ACCESS TYPE

CLOCK PERIODS REQUIRED FOR: Total
Clocks1st Beat 2nd Beat 3rd Beat 4th Beat

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

4-Beat Read 70 22 64 16 64 16 64 16 262 70

4-Beat Write N/A N/A

1-Beat Read (1 byte) 22 22 - - - - - - 22 22

1-Beat Read (2 to 8
bytes)

70 22 - - - - - - 70 22

1-Beat Write 21 21 - - - - - - 21 21

3-20 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Notes The information in Table 3-6 applies to access timing when
configured for devices with an access time equal to 8 clock
periods.

Table 3-6. PPC60x Bus to ROM/Flash Access Timing
(80ns @ 100 MHz)

ACCESS TYPE

CLOCK PERIODS REQUIRED FOR: Total
Clocks1st Beat 2nd Beat 3rd Beat 4th Beat

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

4-Beat Read 54 18 48 12 48 12 48 12 198 54

4-Beat Write N/A N/A

1-Beat Read (1 byte) 18 18 - - - - - - 18 18

1-Beat Read (2 to 8
bytes)

54 18 - - - - - - 54 18

1-Beat Write 21 21 - - - - - - 21 21

Table 3-7. PPC60x Bus to ROM/Flash Access Timing
(50ns @ 100 MHz)

ACCESS TYPE

CLOCK PERIODS REQUIRED FOR: Total
Clocks1st Beat 2nd Beat 3rd Beat 4th Beat

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

4-Beat Read 42 15 36 9 36 9 36 9 150 42

4-Beat Write N/A N/A

1-Beat Read (1 byte) 15 15 - - - - - - 15 15

1-Beat Read (2 to 8
bytes)

42 15 - - - - - - 42 15

1-Beat Write 21 21 - - - - - - 21 21

Functional Description

http://www.motorola.com/computer/literature 3-21

3

Note The information in Table 3-7 applies to access timing when
configured for devices with an access time equal to 5 clock
periods.

Note The information in Table 3-8 applies to access timing when
configured for devices with an access time equal to 3 clock
periods.

Table 3-8. PPC60x Bus to ROM/Flash Access Timing
(30ns @ 100 MHz)

ACCESS TYPE

CLOCK PERIODS REQUIRED FOR: Total
Clocks1st Beat 2nd Beat 3rd Beat 4th Beat

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

16
Bits

64
Bits

4-Beat Read 34 13 28 7 28 7 28 7 118 34

4-Beat Write N/A N/A

1-Beat Read (1 byte) 13 13 - - - - - - 13 13

1-Beat Read (2 to 8
bytes)

34 13 - - - - - - 34 13

1-Beat Write 21 21 - - - - - - 21 21

3-22 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

I2C Interface

The ASIC has an I2C (Inter-Integrated Circuit) two-wire serial interface
bus: serial clock line (SCL) and serial data line (SDA). This interface has
master-only capability and may be used to communicate the configuration
information to a slave I2C device such as serial EEPROM. The I2C
interface is compatible with these devices, and the inclusion of a serial
EEPROM in the memory subsystem may be desirable. The EEPROM
could maintain the configuration information related to the memory
subsystem even when the power is removed from the system. Each slave
device connected to the I2C bus is software addressable by a unique
address. The number of interfaces connected to the I2C bus is solely
dependent on the bus capacitance limit of 400pF.

For I2C bus programming, the ASIC is the only master on the bus and the
serial EEPROM devices are all slaves. The I2C bus supports 7-bit
addressing mode and transmits data one byte at a time in a serial fashion
with the most significant bit (MSB) being sent out first. Five registers are
required to perform the I2C bus data transfer operations. These are the I2C
Clock Prescaler Register, I2C Control Register, I2C Status Register, I2C
Transmitter Data Register, and I2C Receiver Data Register.

The I2C serial data (SDA) is an open-drain bi-directional line on which
data can be transferred at a rate up to 100 Kbits/s in the standard mode, or
up to 400 kbits/s in the fast mode. The I2C serial clock (SCL) is
programmable via I2_PRESCALE_VAL bits in the I2C Clock Prescaler
Register. The I2C clock frequency is determined by the following formula:

I2C CLOCK = SYSTEM CLOCK / (I2_PRESCALE_VAL+1) / 2

The I2C bus has the ability to perform byte write, page write, current
address read, random read, and sequential read operations.

Functional Description

http://www.motorola.com/computer/literature 3-23

3

I2C Byte Write

The I2C Status Register contains the i2_cmplt bit which is used to indicate
if the I2C master controller is ready to perform an operation. Therefore, the
first step in the programming sequence should be to test the i2_cmplt bit
for the operation-complete status. The next step is to initiate a start
sequence by first setting the i2 start and i2 enbl bits in the I2C Control
Register and then writing the device address (bits 7-1) and write bit (bit
0=0) to the I2C Transmitter Data Register. The i2_cmplt bit will be
automatically clear with the write cycle to the I2C Transmitter Data
Register. The I2C Status Register must now be polled to test the i2_cmplt
and i2_ackin bits. The i2_cmplt bit becomes set when the device address
and write bit have been transmitted, and the i2_ackin bit provides status as
to whether or not a slave device acknowledged the device address. With
the successful transmission of the device address, the word address will be
loaded into the I2C Transmitter Data Register to be transmitted to the slave
device. Again, i2_cmplt and i2_ackin bits must be tested for proper
response. After the word address is successfully transmitted, the next data
loaded into the I2C Transmitter Data Register will be transferred to the
address location selected previously within the slave device. After
i2_cmplt and i2_ackin bits have been tested for proper response, a stop
sequence must be transmitted to the slave device by first setting the i2 stop
and i2enbl bits in the I2C Control Register and then writing a dummy data
(data=don’t care) to the I2C Transmitter Data Register. The I2C Status
Register must now be polled to test i2_cmplt bit for the operation-complete
status. The stop sequence will initiate a programming cycle for the serial
EEPROM and also relinquish the ASIC master’s possession of the I2C bus.
Figure 3-5 shows the suggested software flow diagram for programming
the I2C byte write operation.

3-24 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Figure 3-5. Programming Sequence for I2C Byte Write

READ I2C STATUS REG

CMPLT=1? N

Y

LOAD “WORD ADDR” TO
I2C TRANSMITTER DATA REG

LOAD “DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$09” (START CONDITION) TO
I2C CONTROL REG

LOAD “DEVICE ADDR+WR BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$05” (STOP CONDITION) TO
I2C CONTROL REG

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=1? N

Y

START STOPSDA S
B

M

DEVICE ADDR

W
R

A
C
K

WORD ADDR
A
C
K

DATA

A
C
K

ACK from Slave Device

END

BEGIN

*

*

*

(*): Stop condition should be generated to abort the transfer after a software wait loop (~1ms) has been expired

Functional Description

http://www.motorola.com/computer/literature 3-25

3

I2C Random Read

The I2C random read begins in the same manner as the I2C byte write. The
first step in the programming sequence should be to test the i2_cmplt bit
for the operation-complete status. The next step is to initiate a start
sequence by first setting the i2_start and i2_enbl bits in the I2C Control
Register and then writing the device address (bits 7-1) and write bit (bit
0=0) to the I2C Transmitter Data Register. The i2_cmplt bit will be
automatically clear with the write cycle to the I2C Transmitter Data
Register. The I2C Status Register must now be polled to test the i2_cmplt
and i2_ackin bits. The i2_cmplt bit becomes set when the device address
and write bit have been transmitted, and the i2_ackin bit provides status as
to whether or not a slave device acknowledged the device address. With
the successful transmission of the device address, the word address will be
loaded into the I2C Transmitter Data Register to be transmitted to the slave
device. Again, i2_cmplt and i2_ackin bits must be tested for proper
response. At this point, the slave device is still in a write mode. Therefore,
another start sequence must be sent to the slave to change the mode to read
by first setting the i2_start and i2_enbl bits in the I2C Control Register and
then writing the device address (bits 7-1) and read bit (bit 0=1) to the I2C
Transmitter Data Register. After i2_cmplt and i2_ackin bits have been
tested for proper response, the I2C master controller writes a dummy value
(data=don’t care) to the I2C Transmitter Data Register.This causes the I2C
master controller to initiate a read transmission from the slave device.
Again, i2_cmplt bit must be tested for proper response. After the I2C
master controller has received a byte of data (indicated by i2_datin=1 in the
I2C Status Register), the system software may then read the data by polling
the I2C Receiver Data Register. The I2C master controller does not
acknowledge the read data for a single byte transmission on the I2C bus,
but must complete the transmission by sending a stop sequence to the slave
device. This can be accomplished by first setting the i2_stop and i2_enbl
bits in the I2C Control Register and then writing a dummy data (data=don’t
care) to the I2C Transmitter Data Register. The I2C Status Register must
now be polled to test i2_cmplt bit for the operation-complete status. The
stop sequence will relinquish the ASIC master’s possession of the I2C bus.
Figure 3-6 shows the suggested software flow diagram for programming
the I2C random read operation.

3-26 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Figure 3-6. Programming Sequence for I2C Random Read

READ I2C STATUS REG

CMPLT=1? N

Y

LOAD “WORD ADDR x” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$09” (START CONDITION) TO
I2C CONTROL REG

LOAD “DEVICE ADDR+WR BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$05” (STOP CONDITION) TO
I2C CONTROL REG

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=1? N

Y

END

LOAD “$09” (REPEATED START
CONDITION) TO I2C CONTROL REG

LOAD “DEVICE ADDR+RD BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=DATIN=1? N

Y

BEGIN

READ I2C RECEIVER DATA REG

START
M
S
B

SDA

DEVICE ADDR

W
R

A
C
K

WORD ADDR x
A
C
K

START
M
S
B

DEVICE ADDR

R
D

A
C
K

DATA x
N
O
A
C
K

STOP

ACK and DATA from Slave Device

*

*

*

*

(*): Stop condition should be generated to abort the transfer after a software wait loop (~1ms) has been expired

Functional Description

http://www.motorola.com/computer/literature 3-27

3

I2C Current Address Read

The I2C slave device should maintain the last address accessed during the
last I2C read or write operation, incremented by one. The first step in the
programming sequence should be to test the i2_cmplt bit for the operation-
complete status. The next step is to initiate a start sequence by first setting
the i2_start and i2_enbl bits in the I2C Control Register and then writing
the device address (bits 7-1) and read bit (bit 0=1) to the I2C Transmitter
Data Register. The i2_cmplt bit will be automatically clear with the write
cycle to the I2C Transmitter Data Register. The I2C Status Register must
now be polled to test the i2_cmplt and i2_ackin bits. The i2_cmplt bit
becomes set when the device address and read bit have been transmitted,
and the i2_ackin bit provides status as to whether or not a slave device
acknowledged the device address. With the successful transmission of the
device address, the I2C master controller writes a dummy value
(data=don’t care) to the I2C Transmitter Data Register.This causes the I2C
master controller to initiate a read transmission from the slave device.
Again, i2_cmplt bit must be tested for proper response. After the I2C
master controller has received a byte of data (indicated by i2_datin=1 in
the I2C Status Register), the system software may then read the data by
polling the I2C Receiver Data Register. The I2C master controller does not
acknowledge the read data for a single byte transmission on the I2C bus,
but must complete the transmission by sending a stop sequence to the slave
device. This can be accomplished by first setting the i2_stop and i2_enbl
bits in the I2C Control Register and then writing a dummy data (data=don’t
care) to the I2C Transmitter Data Register. The I2C Status Register must
now be polled to test i2_cmplt bit for the operation-complete status. The
stop sequence will relinquish the ASIC master’s possession of the I2C bus.
Figure 3-7 shows the suggested software flow diagram for programming
the I2C current address read operation.

3-28 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Figure 3-7. Programming Sequence for I2C Current Address Read

READ I2C STATUS REG

CMPLT=1? N

Y

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=DATIN=1? N

Y

LOAD “$09” (START CONDITION) TO
I2C CONTROL REG

LOAD “DEVICE ADDR+RD BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$05” (STOP CONDITION) TO
I2C CONTROL REG

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=1? N

Y

END

BEGIN

START
M
S
B

SDA

DEVICE ADDR

R
D

A
C
K

DATA of (last ADDR+1)
N
O
A
C
K

STOP

ACK and DATA from Slave Device

*

*

(*): Stop condition should be generated to abort the transfer after a software wait loop (~1ms) has been expired

READ I2C RECEIVER DATA REG

Functional Description

http://www.motorola.com/computer/literature 3-29

3

I2C Page Write

The I2C page write is initiated the same as the I2C byte write, but instead
of sending a stop sequence after the first data word, the I2C master
controller will transmit more data words before a stop sequence is
generated. The first step in the programming sequence should be to test the
i2_cmplt bit for the operation-complete status. The next step is to initiate a
start sequence by first setting the i2_start and i2_enbl bits in the I2C
Control Register and then writing the device address (bits 7-1) and write
bit (bit 0=0) to the I2C Transmitter Data Register. The i2_cmplt bit will be
automatically clear with the write cycle to the I2C Transmitter Data
Register. The I2C Status Register must now be polled to test the i2_cmplt
and i2_ackin bits. The i2_cmplt bit becomes set when the device address
and write bit have been transmitted, and the i2_ackin bit provides status as
to whether or not a slave device acknowledged the device address. With
the successful transmission of the device address, the initial word address
will be loaded into the I2C Transmitter Data Register to be transmitted to
the slave device. Again, i2_cmplt and i2_ackin bits must be tested for
proper response. After the initial word address is successfully transmitted,
the first data word loaded into the I2C Transmitter Data Register will be
transferred to the initial address location of the slave device. After
i2_cmplt and i2_ackin bits have been tested for proper response, the next
data word loaded into the I2C Transmitter Data Register will be transferred
to the next address location of the slave device, and so on, until the block
transfer is complete. A stop sequence then must be transmitted to the slave
device by first setting the i2_stop and i2_enbl bits in the I2C Control
Register and then writing a dummy data (data=don’t care) to the I2C
Transmitter Data Register. The I2C Status Register must now be polled to
test i2_cmplt bit for the operation-complete status. The stop sequence will
initiate a programming cycle for the serial EEPROM and also relinquish
the ASIC master’s possession of the I2C bus. Figure 3-8 shows the
suggested software flow diagram for programming the I2C page write
operation.

3-30 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Figure 3-8. Programming Sequence for I2C Page Write

READ I2C STATUS REG

CMPLT=1? N

Y

LOAD “WORD ADDR 1” TO
I2C TRANSMITTER DATA REG

LOAD “DATA1 ... DATA n” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$09” (START CONDITION) TO
I2C CONTROL REG

LOAD “DEVICE ADDR+WR BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$05” (STOP CONDITION) TO
I2C CONTROL REG

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=1? N

Y

START STOPSDA S
B

M
DEVICE ADDR

W
R

A
C
K

WORD ADDR 1
A
C
K

DATA 1
A
C
K

ACK from Slave Device

END

BEGIN

*

*
*

(*): Stop condition should be generated to abort the transfer after a software wait loop (~1ms) has been expired

DATA n
A
C
K

LAST BYTE ? N

Y

Functional Description

http://www.motorola.com/computer/literature 3-31

3

I2C Sequential Read

The I2C sequential read can be initiated by either an I2C random read
(described here) or an I2C current address read.

The first step in the programming sequence of an I2C random read
initiation is to test the i2_cmplt bit for the operation-complete status. The
next step is to initiate a start sequence by first setting the i2_start and
i2_enbl bits in the I2C Control Register and then writing the device address
(bits 7-1) and write bit (bit 0=0) to the I2C Transmitter Data Register. The
i2_cmplt bit is automatically cleared with the write cycle to the I2C
Transmitter Data Register.

The I2C Status Register must now be polled to test the i2_cmplt and
i2_ackin bits. The i2_cmplt bit becomes set when the device address and
write bit are transmitted, and the i2_ackin bit provides status as to whether
or not a slave device acknowledged the device address. With the successful
transmission of the device address, the initial word address is loaded into
the I2C Transmitter Data Register to be transmitted to the slave device.
Again, i2_cmplt and i2_ackin bits must be tested for proper response.

At this point, the slave device is still in a write mode. Therefore, another
start sequence must be sent to the slave to change the mode to read by first
setting the i2_start, i2_ackout, and i2_enbl bits in the I2C Control Register
and then writing the device address (bits 7-1) and read bit (bit 0=1) to the
I2C Transmitter Data Register. After i2_cmplt and i2_ackin bits are tested
for proper response, the I2C master controller writes a dummy value
(data=don’t care) to the I2C Transmitter Data Register.This causes the I2C
master controller to initiate a read transmission from the slave device.

After the I2C master controller has received a byte of data (indicated by
i2_datin=1 in the I2C Status Register) and the i2_cmplt bit has also been
tested for proper status, the I2C master controller responds with an
acknowledge and the system software may then read the data by polling
the I2C Receiver Data Register.

3-32 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

As long as the slave device receives an acknowledge, it will continue to
increment the word address and serially clock out sequential data words.
The I2C sequential read operation is terminated when the I2C master
controller does not respond with an acknowledge. This can be
accomplished by setting only the i2_enbl bit in the I2C Control Register
before receiving the last data word. A stop sequence then must be
transmitted to the slave device by first setting the i2_stop and i2_enbl bits
in the I2C Control Register and then writing a dummy data (data=don’t
care) to the I2C Transmitter Data Register. The I2C Status Register must
now be polled to test i2_cmplt bit for the operation-complete status. The
stop sequence will relinquish the ASIC master’s possession of the I2C bus.
Figure 3-9 shows the suggested software flow diagram for programming
the I2C sequential read operation.

Functional Description

http://www.motorola.com/computer/literature 3-33

3

Figure 3-9. Programming Sequence for I2C Sequential Read

READ I2C STATUS REG

CMPLT=1? N

Y

LOAD “WORD ADDR 1” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$09” (START CONDITION) TO
I2C CONTROL REG

LOAD “DEVICE ADDR+WR BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “$05” (STOP CONDITION) TO
I2C CONTROL REG

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=1? N

Y

END

LOAD “$0B” (REPEATED START
CONDITION) TO I2C CONTROL REG

LOAD “DEVICE ADDR+RD BIT” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=ACKIN=1? N

Y

LOAD “DUMMY DATA” TO
I2C TRANSMITTER DATA REG

READ I2C STATUS REG

CMPLT=DATIN=1? N

Y

BEGIN

READ I2C RECEIVER DATA REG

START
M
S
B

SDA

DEVICE ADDR

W
R

A
C
K

WORD ADDR 1
A
C
K

START
M
S
B

DEVICE ADDR

R
D

DATA n
N
O
A
C
K

STOP

ACK and DATA from Slave Device

*

*

*

*

(*): Stop condition should be generated to abort the transfer after a software wait loop (~1ms) has been expired

A
C
K

DATA 1
A
C
K

LAST BYTE ? N

Y

LAST BYTE - 1 ? Y

N

LOAD “$01” TO I2C CONTROL REG

3-34 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Refresh/Scrub

The SMC performs refresh by doing a burst of 4 CAS-Before-RAS (CBR)
refresh cycles to each block of SDRAM once every 60 microseconds. It
performs scrubs by replacing every 128th refresh burst with a read cycle to
8 bytes in each block of SDRAM. If during the read cycle, the SMC detects
a single-bit error, it performs a write cycle back to SDRAM using
corrected data providing the SWEN control bit is set. It does not perform
the write if the SWEN bit is cleared. If the SMC detects a double-bit error,
it does not perform a write.

If so enabled, single- and double-bit scrub errors are logged and the
PPC60x bus master is notified via interrupt.

CSR Accesses

The SMC has a set of control and status registers (CSR) that allow software
to control certain functions and to monitor some status.

External Register Set

The SMC has an external register chip select pin which enables it to talk to
an external set of registers. This interface is like the ROM/Flash interface
but with less flexibility. It is intended for the system designer to be able to
implement general-purpose status/control signals with this external set.
Refer to the section on External Register Set, further on in this chapter, for
a description of this register set.

The SMC has a mode in which two of its pins become control register
outputs. When the SMC is to operate in this mode, the External Register
Set cannot be implemented. The two control bits appear in the range where
the External Register Set would have been had it been implemented.

Programming Model

http://www.motorola.com/computer/literature 3-35

3

Chip Configuration

Some configuration options in the Hawk must be configured at power-up
reset time before software performs any accesses to it. The Hawk obtains
this information by latching the value on some of the upper RD signals just
after the rising edge of the PURST_ signal pin. The recommended way to
control the RD signals during reset is to place pull-up or pull-down
resistors on the RD bus. If there is a set of buffers between the RD bus and
the ROM/Flash devices, it is best to put the pull-up/pull-down resistors on
the far side of the buffers so that loading will be kept to a minimum. The
Hawk’s SDRAM buffer control signals cause the buffers to drive toward
the Hawk during power-up reset.

Other configuration information is needed by software to properly
configure the Hawk’s control registers. This information can be obtained
from devices connected to the I2C bus.

Programming Model

CSR Architecture

The CSR (control and status register set) consists of the chip’s internal
register set and its external register set. The base address of the CSR is hard
coded to the address $FEF80000 (or $FEF90000 if the RD[5] pin is high
at reset). To remain backwards compatible with older Raven/Falcon
designs, Hawk offers two options:

RD[5]=0=>PHB is at 0xFEFF0000, SMC is at 0xFEF80000 (default)
RD[5]=1=>PHB is at 0xFEFE0000, SMC is at 0xFEF90000

Accesses to the CSR are performed on the upper 32 bits of the PPC60x data
bus. Unlike the internal register set, data for the external register set can be
writen and read on both the upper and lower halves of the PPC60x data bus.

CSR read accesses can have a size of 1, 2, 4, or 8 bytes with any alignment.
CSR write accesses are restricted to a size of 1 or 4 bytes and they must be
aligned.

3-36 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Register Summary

Table 3-9 shows a summary of the internal and external register set.

Table 3-9. Register Summary

BIT # ----> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FEF80000 VENDID DEVID

FEF80008

tb
en

_e
n REVID

ao
nl

y_
en

is
a_

ho
le PU STAT

FEF80010

ra
m

 a
 e

n RAM A
SIZ

ra
m

 b
 e

n RAM B
SIZ

ra
m

 c
 e

n RAM C
SIZ

ra
m

 d
 e

n RAM D
SIZ

FEF80018 RAM A BASE RAM B BASE RAM C BASE RAM D BASE

FEF80020 CLK FREQUENCY po
r

FEF80028

re
fd

is

rw
cb

de
rc

ap
ie

n

sc
ie

n

dp
ie

n

si
en

m
ie

n

in
t

m
be

_m
e

FEF80030

el
og

es
cb

es
en

em
bt

es
bt

ERR_SYNDROME

es
bl

k0

es
bl

k1

es
bl

k2

sc
of

SBE COUNT

FEF80038 ERROR_ADDRESS

FEF80040

sc
b0

sc
b1

sw
en SCRUB FREQUENCY

FEF80048 SCRUB ADDRESS

FEF80050
ROM A BASE

ro
m

_a
_6

4 ROM
A SIZ

ro
m

_a
_r

v

ro
m

 a
 e

n

ro
m

 a
 w

e
FEF80058

ROM B BASE

ro
m

_b
_6

4 ROM
B SIZ

ro
m

_b
_r

v

ro
m

 b
 e

n

ro
m

 b
 w

e

FEF80060

ro
m

_a
_s

pd
0

ro
m

_a
_s

pd
1

ro
m

_b
_s

pd
0

ro
m

_b
_s

pd
1

FEF80068

dp
el

og

DPE_TT DPE_DP

dp
e_

ck
al

l

dp
e_

m
e GWDP

Programming Model

http://www.motorola.com/computer/literature 3-37

3

FEF80070 DPE_A

FEF80078 DPE_DH

FEF80080 DPE_DL

FEF80090 I2_PRESCALE_VAL

FEF80098

i2
_s

ta
rt

i2
_s

to
p

i2
_a

ck
ou

t

i2
_e

nb
l

FEF800A0

i2
_d

at
in

i2
_e

rr

i2
_a

ck
in

i2
_c

m
pl

t

FEF800A8 I2_DATAWR

FEF800B0 I2_DATARD

FEF800C0

ra
m

 e
 e

n RAM E
SIZ

ra
m

 f
 e

n RAM F
SIZ

ra
m

 g
 e

n RAM G
SIZ

ra
m

 h
 e

n RAM H
SIZ

FEF800C8 RAM E BASE RAM F BASE RAM G BASE RAM H BASE

FEF800D0

cl
3

tr
c0

tr
c1

tr
c2

tr
as

0

tr
as

1

sw
r_

dp
l

td
p

tr
p

tr
cd

FEF800E0

ap
el

og APE_TT APE_AP

ap
e_

m
e

FEF800E8 APE_A

FEF80100 CTR32

FEF88300

p1
_t

be
n

p0
_t

be
n

FEF88000
-

FEF8FFF8
EXTERNAL REGISTER SET

BIT # ----> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 3-9. Register Summary (Continued)

3-38 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Notes 1. All empty bit fields are reserved and read as zeros.

2. All status bits are shown in italics.

3. All control bits are shown with underline.

4. All control-and-status bits are shown with italics and
underline.

Detailed Register Bit Descriptions

The following sections describe the registers and their bits in detail. The
possible operations for each bit in the register set are as follows:

R The bit is a read only status bit.

R/W The bit is readable and writable.

R/C The bit is cleared by writing a one to itself.

The possible states of the bits after local and power-up reset are as defined
below.

P The bit is affected by power-up reset (PURST_).

L The bit is affected by local reset (RST_).

X The bit is not affected by reset.

V The effect of reset on the bit is variable.

Programming Model

http://www.motorola.com/computer/literature 3-39

3

Vendor/Device Register

VENDID This read-only register contains the value $1057. It is the
vendor number assigned to Motorola Inc.

DEVID This read-only register contains the value $4803. It is the
device number for the Hawk.

Revision ID/General Control Register

tben en tben_en controls the enable for the p1_tben and p0_tben
output signals. When tben_en is set, the I2clm_ input pin
becomes the p1_tben output pin and the ercs_output pin
becomes the p0_tben output pin. Also, the SMC does not
respond to accesses that fall within the external register set
address range except for the address $FEF88300. When
tben_en is cleared, the I2clm_ and ercs_ pins retain their
normal function and the SMC does respond to external
register set accesses.

Address $FEF80000
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

VENDID DEVID

Operation READ ONLY READ ONLY
Reset $1057 $4803

Address $FEF80008

Bit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

0 0 0 0 0 0 0 tb
en

_e
n

REVID

0 0 0 0 0 0 ao
nl

y_
en

is
a_

ho
le

0 0 0 0 pu
_s

ta
t0

pu
_s

ta
t1

pu
_s

ta
t2

pu
_s

ta
t3

Operation

R R R R R R R R
/W READ ONLY

R R R R R R R R
/W

R R R R R R R R

Reset

X X X X X X X 0
P $01

X X X X X X V
 P

0
P

L
X X X X V

 P
V

 P
V

 P
V

 P

3-40 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Software should only set the tben_en bit when there is no
external L2 cache connected to the I2clm_ pin and when
there is no external register set.

REVID The REVID bits are hard-wired to indicate the revision
level of the SMC. The value for the first revision is $01.

aonly_en Normally, the SMC responds to address-only cycles only
if they fall within the address range of one of its enabled
map decoders. When the aonly_en bit is set, the SMC also
responds to address-only cycles that fall outside of the
range of its enabled map decoders provided they are not
acknowledged by some other slave within 8 clock periods.
aonly_en is read-only and reflects the level that was on
the RD4 pin at power-up reset time.

isa_hole When it is set, isa_hole disables any of the SDRAM or
ROM/Flash blocks from responding to PowerPC accesses
in the range from $000A0000 to $000BFFFF. This has the
effect of creating a hole in the SDRAM memory map for
accesses to ISA. When isa_hole is cleared, there is no hole
created in the memory map.

pu_stat0-pu_stat3 pu_stat0, pu_stat1, pu_stat2, and pu_stat3 are read-
only status bits that indicate the levels that were on the
RD13, RD14, RD15, and RD16 signal pins respectively at
power-up reset. They provide a means to pass information
to software using pull-up/pull-down resistors on the RD
bus or on a buffered RD bus.

Programming Model

http://www.motorola.com/computer/literature 3-41

3

SDRAM Enable and Size Register (Blocks A, B, C, D)

Writes to this register must be enveloped by a period of time in which no
accesses to SDRAM occur. The requirements of the envelope are that all
SDRAM accesses must have completed before the write starts and none
should begin until after the write is done. A simple way to do this is to
perform at least two read accesses to this (or another register) before and
after the write.

Additionally, sometime during the envelope, before or after the write, all
of the SDRAMs’ open pages must be closed and the Hawk’s open page
tracker must be reset. The way to do this is to allow enough time for at least
one SDRAM refresh to occur by waiting for the 32-bit counter (see register
description further on in this chapter) to increment at least 100 times. The
wait period needs to happen during the envelope.

ram a/b/c/d en ram a/b/c/d en enables 60x accesses to the corresponding
block of SDRAM when set, and disables them when
cleared.

Note that ram e/f/g/h en are located at $FEF800C0 (refer
to the section on SDRAM Enable and Size Register
(Blocks E, F, G, H) further on in this chapter for more
information.) They operate the same for blocks E-H as
these bits do for blocks A-D.

ram a/b/c/d siz0-3 These control bits define the size of their corresponding
block of SDRAM. Table 3-10 shows the block
configuration assumed by the SMC for each value of ram
siz0-ram siz3. Note that ram e/f/g/h size0-3 are located
at $FEF800C0. They operate identically for blocks E-H as
these bits do for blocks A-D.

Address $FEF80010
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

ra
m

 a
 e

n
0 0 0 ra

m
 a

 s
iz

0
ra

m
 a

 s
iz

1
ra

m
 a

 s
iz

2
ra

m
 a

 s
iz

3
ra

m
 b

 e
n

0 0 0 ra
m

 b
 s

iz
0

ra
m

 b
 s

iz
1

ra
m

 b
 s

iz
2

ra
m

 b
 s

iz
3

ra
m

 c
 e

n
0 0 0 ra

m
 c

 s
iz

0
ra

m
 c

 s
iz

1
ra

m
 c

 s
iz

2
ra

m
 c

 s
iz

3
ra

m
 d

 e
n

0 0 0 ra
m

 d
 s

iz
0

ra
m

 d
 s

iz
1

ra
m

 d
 s

iz
2

ra
m

 d
 s

iz
3

Operation

R
/W

R R R R
/W

R
/W

R
/W

R
/W

R
/W

R R R R
/W

R
/W

R
/W

R
/W

R
/W

R R R R
/W

R
/W

R
/W

R
/W

R
/W

R R R R
/W

R
/W

R
/W

R
/W

Reset

0
PL

X X X 0
P

0
P

0
P

0
P

0
PL

X X X 0
P

0
P

0
P

0
P

0
PL

X X X 0
P

0
P

0
P

0
P

0
PL

X X X 0
P

0
P

0
P

0
P

3-42 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Notes 1. All SDRAM components should be organized with 4
internal banks.

2. When DIMMs are used, the Component Configuration
refers to the configuration of the devices used on the DIMMs.

3. It is important that all of the ram a/b/c/d/e/f/g/h siz0-3 bits be
set to accurately match the actual size of their corresponding
blocks. This includes clearing them to binary 00000 if their
corresponding blocks are not present. Failure to do so will cause
problems with addressing and with scrub logging.

Table 3-10. Block_A/B/C/D/E/F/G/H Configurations

ram a-h
siz0-3

Component
Configuration

Number of
SDRAM

Components
In the Block

Block
SIZE

SDRAM
Technology

%0000 - - 0MBytes -

%0001 4Mx16 5 32MBytes 64Mbit

%0010 8Mx8 9 64MBytes 64Mbit

%0011 8Mx16 5 64MBytes 128Mbit

%0100 16Mx4 18 128MBytes 64Mbit

%0101 16Mx8 9 128MBytes 128Mbit

%0110 16Mx16 5 128MBytes 256Mbit

%0111 32Mx4 18 256MBytes 128Mbit

%1000 32Mx8 9 256MBytes 256Mbit

%1001 64Mx4 18 512MBytes 256Mbit

%1010

-

%1111

Reserved - - -

Programming Model

http://www.motorola.com/computer/literature 3-43

3

SDRAM Base Address Register (Blocks A/B/C/D)

Writes to this register must be enveloped by a period of time in which no
accesses to SDRAM occur. The requirements of the envelope are that all
SDRAM accesses must have completed before the write starts and none
should begin until after the write is done. A simple way to do this is to
perform at least two read accesses to this, or another register, before and
after the write.

Additionally, sometime during the envelope, before or after the write, all
of the SDRAMs’ open pages must be closed and the Hawk’s open page
tracker reset. The way to do this is to allow enough time for at least one
SDRAM refresh to occur by waiting for the 32-Bit Counter, described
further on in this chapter, to increment at least 100 times. The wait period
must happen during the envelope.

RAM A/B/C/D BASE These control bits define the base address for their block’s
SDRAM. RAM A/B/C/D BASE bits 0-7/8-15/16-23/24-
31 correspond to PPC60x address bits 0 - 7. For larger
SDRAM sizes, the lower significant bits of A/B/C/D
BASE are ignored. This means that the block’s base
address will always appear at an even multiple of its size.
Remember that bit 0 is MSB.

Note that RAM_E/F/G/H_BASE are located at
$FEF800C8 (refer to the section on SDRAM Base
Address Register (Blocks E/F/G/H). They operate the
same for blocks E-H as these bits do for blocks A-D.

Also note that the combination of RAM_X_BASE and
ram_x_siz should never be programmed such that
SDRAM responds at the same address as the CSR,
ROM/Flash, External Register Set, or any other slave on
the PowerPC bus.

Address $FEF80018
Bit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name RAM A BASE RAM B BASE RAM C BASE RAM D BASE
Operation READ/WRITE READ/WRITE READ/WRITE READ/WRITE
Reset 0 PL 0 PL 0 PL 0 PL

3-44 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

CLK Frequency Register

CLK FREQUENCY These bits should be programmed with the hexadecimal
value of the operating CLOCK frequency in MHz (i.e. $42
for 66 MHz). When these bits are programmed this way,
the chip’s prescale counter produces a 1 MHz
(approximate) output. The output of the chip prescale
counter is used by the refresher/scrubber and the 32-bit
counter. After power-up, this register is initialized to $64
(for 100 MHz). The formula is:

Counter_Output_Frequency = (Clock
Frequency)/CLK_FREQUENCY

For example, if the Clock Frequency is 100 MHz and
CLK_FREQUENCY is $64, then the counter output
frequency is 100 MHz/100 = 1 MHz.

When the CLK pin is operating slower than 100MHz,
software should program CLK_FREQUENCY to be at
least as slow as the CLK pin’s frequency as soon as
possible after power-up reset so that SDRAM refresh does
not get behind. It is okay for the software then to take
some time to “up” CLK_FREQUENCY to the correct
value. Refresh will get behind only when the actual CLK
pin’s frequency is lower than the value programmed into
CLK_FREQUENCY.

por por is set by the occurrence of power up reset. It is cleared
by writing a one to it. Writing a 0 to it has no effect.

Address $FEF80020
Bit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name CLK FREQUENCY
0 0 0 0 0 0 0 por

Operation READ/WRITE READ ZERO READ ZERO
R R R R R R R R

/C

Reset 64 P X X

X X X X X X X 1 P

Programming Model

http://www.motorola.com/computer/literature 3-45

3

ECC Control Register

refdis When set, refdis causes the refresher and all of its
associated counters and state machines to be cleared and
maintained that way until refdis is removed (cleared). If a
refresh cycle is in process when refdis is updated by a
write to this register, the update does not take effect until
the refresh cycle has completed. This prevents the
generation of illegal cycles to the SDRAM when refdis is
updated.

rwcb rwcb, when set, causes reads and writes to SDRAM from
the PPC60x bus to access check-bit data rather than
normal data. The data path used for reading and writing
check bits is D0-D7. Each 8-bit check-bit location
services 64 bits of normal data. Figure 3-10 shows the
relationship between normal data and check-bit data.

Address $FEF80028
Bit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

0 0 0 0 0 refdis
rw

cb
derc
0 0 0 apien
scien
dpien
sien
m

ien int

0 0 0 0 0 0 0 m
be_m

e

Operation

R R R R R R
/W

R
/W

R
/W

R R R R
/W

R
/W

R
/W

R
/W

R
/W

R
/C READ ZERO

R R R R R R R R
/W

Reset

X X X X X 0 P
L

0 P
L

1 P
L

X X X 0P
L

0 P
L

0 P
L

0 P
L

0P
L

0P
L

X X X X X X X 0 P
L

3-46 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Figure 3-10. Read/Write Check-bit Data Paths

Note that if test software attempts to force a single-bit error to a location
using the rwcb function, the scrubber may correct the location before the
test software gets a chance to check for the single-bit error. This can be
avoided by disabling scrub writes. Also note that writing bad check-bits
can set the elog bit in the Error Logger Register. The writing of check-bits
causes the SMC to perform a read-modify-write to SDRAM. If the location
to which check-bits are being written has a single- or double-bit error, data
in the location may be altered by the write check-bits operation. To avoid
this, it is recommended that the derc bit also be set while the rwcb bit is
set. A possible sequence for performing read-write check-bits is as
follows:

1. Disable scrub writes by clearing the swen bit if it is set.

2. Make sure software is not using DRAM at this point, because while
rwcb is set, DRAM will not function as normal memory.

3. Set the derc and rwcb bits in the Data Control register.

4. Perform the desired read and/or write check-bit operations.

64 bits

0

Normal
View of
Data

Check-bit
View
(rwcb=1)

0 1 2 3 4 5 6 7

(rwcb=0)

Programming Model

http://www.motorola.com/computer/literature 3-47

3

5. Clear the derc and rwcb bits in the Data Control register.

6. Perform the desired testing related to the location/locations that
have had their check-bits altered.

7. Enable scrub writes by setting the swen bit if it was set before.

derc Setting derc to one alters SMC operation as follows:

1. During reads, data is presented to the PPC60x data bus uncorrected
from the SDRAM array.

2. During single-beat writes, data is written without correcting single-
bit errors that may occur on the read portion of the read-modify-
write. Check-bits are generated for the data being written.

3. During single-beat writes, the write portion of the read-modify-
write happens regardless of whether there is a multiple-bit error
during the read portion. No correction of data is attempted. Check-
bits are generated for the data being written.

4. During scrub cycles, if swen is set, a read-writes to SDRAM
happens with no attempt to correct data bits. Check-bits are
generated for the data being written.

derc is useful for initializing SDRAM after power-up and
for testing SDRAM, but it should be cleared during
normal system operation.

apien When apien is set, the logging of a PPC60x address parity
error causes the int bit to be set if it is not already. When
the int bit is set, the Hawk’s internal error interrupt is
asserted.

scien When scien is set, the rolling over of the
SBE COUNT register causes the int bit to be set if it is
not already. When the int bit is set, the Hawk’s internal
error interrupt is asserted.

dpien When dpien is set, the logging of a PPC60x data parity
error causes the int bit to be set if it is not already. When
the int bit is set, the Hawk’s internal error interrupt is
asserted.

3-48 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

sien When sien is set, the logging of a single-bit error causes
the int bit to be set if it is not already. When the int bit is
set, the Hawk’s internal error interrupt is asserted.

mien When mien is set, the logging of a non-correctable error
causes the int bit to be set if it is not already. When the int
bit is set, the Hawk’s internal error interrupt is asserted.

int int is set when one of the SMC’s interrupt conditions
occurs. It is cleared by reset or by software writing a one
to it. The Hawk’s internal error interrupt tracks int. When
int is set, Hawk’s internal error interrupt is asserted.
When int is cleared, Hawk’s internal error interrupt is
negated.

mbe_me When mbe_me is set, the detection of a multiple-bit error
during a PowerPC read or write to SDRAM causes the
SMC to pulse its machine check interrupt request pin
(MCHK0_) true. When mbe_me is cleared, the SMC
does not assert its MCHK0_ pin on multiple-bit errors.

The SMC never asserts its MCHK0_ pin in response to a
multiple-bit error detected during a scrub cycle.

!
Caution

The Hawk’s internal error interrupt and the MCHK0_ pin are the only non-
polled notification that a multiple-bit error has occurred. The SMC does
not assert TEA as a result of a multiple bit error. In fact, the SMC does not
have a TEA_ signal pin and it assumes that the system does not implement
TEA.

Programming Model

http://www.motorola.com/computer/literature 3-49

3

Error Logger Register

elog When set, elog indicates that a single- or a multiple-bit
error has been logged by the SMC. If elog is set by a
multiple-bit error, then no more errors will be logged until
software clears it. If elog is set by a single-bit error, then
no more single-bit errors will be logged until software
clears it, however if elog is set by a single-bit error and a
multiple-bit error occurs, the multiple-bit error will be
logged and the single-bit error information overwritten.
elog can only be set by the logging of an error and cleared
by the writing of a one to itself or by power-up reset.

escb escb indicates the entity that was accessing SDRAM at
the last logging of a single- or multiple-bit error by the
SMC. If escb is 1, it indicates that the scrubber was
accessing SDRAM. If escb is 0, it indicates that the
PPC60x bus master was accessing SDRAM.

esen When set, esen allows errors that occur during scrubs to
be logged. When cleared, esen does not allow errors that
occur during scrubs to be logged.

embt embt is set by the logging of a multiple-bit error. It is
cleared by the logging of a single-bit error. It is undefined
after power-up reset. The syndrome code is meaningless if
its embt bit is set.

Address $FEF80030
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name elog
0 0 0 escb
esen
em

bt
esbt ERR_SYNDROME

0 esblk0
esblk1
esblk2
0 0 0 scof SBE_COUNT

Operation R
/C

R R R R R
/W

R R

READ ONLY

R R R R R R R R
/C READ/WRITE

Reset 0 P
X X X 0 P
0 P

L
0 P
0 P 0P

X 0P 0P 0P X X X 0 P 0P

3-50 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

esbt esbt is set by the logging of a single-bit error. It is cleared
by the logging of a multiple-bit error. When the SMC logs
a single-bit error, the syndrome code indicates which bit
was in error. Refer to the section on SDRAM ECC Codes.

ERR_SYNDROME ERR_SYNDROME reflects the syndrome value at the
last logging of an error. This eight-bit code indicates the
position of the data error. When all the bits are zero, there
was no error. Note that if the logged error was multiple-bit
then these bits are meaningless. Refer to the section on
SDRAM ECC Codes for a decoding of the syndromes.

esblk0,esblk1, esbik2 Together these three bits indicate which block of SDRAM
was being accessed when the SMC logged a scrub error.
esblk0,esblk1, esbik2 are 0,0,0 for Block A; 0,0,1 for
Block B; 0,1,0 for Block C; and 0,1,1 for Block D, etc.

scof scof is set by the SBE COUNT register rolling over from
$FF to $00. It is cleared by software writing a 1 to it.

SBE COUNT SBE_COUNT keeps track of the number of single-bit
errors that have occurred since it was last cleared. It
counts up by one each time it detects a single-bit error
(independent of the state of the elog bit). The
SBE_COUNT is cleared by power-up reset and by
software writing all zeros to itself. When
SBE COUNT rolls over from $FF to $00, the SMC sets
the scof bit. The rolling over of SBE_COUNT pulses the
Hawk’s internal error interrupt low if the scien bit is set.

Programming Model

http://www.motorola.com/computer/literature 3-51

3

Error_Address Register

ERROR_ADDRESS These bits reflect the value that corresponds to bits 0-28 of
the PPC60x address bus when the SMC last logged an
error during a PowerPC access to SDRAM. They reflect
the value of the SCRUB ADDRESS counter if the error
was logged during a scrub cycle.

Scrub/Refresh Register

scb0, scb1 These bits increment every time the scrubber completes a
scrub of the entire SDRAM. When they reach binary 11,
they roll over to binary 00 and continue. These bits are
cleared by power-up reset.

swen When set, swen allows the scrubber to perform write
cycles. When cleared, swen prevents scrubber writes.

SCRUB_FREQUENCY Determines the rate of scrubbing by setting the roll-over
count for the scrub prescale counter. Each time the SMC
performs a refresh burst, the scrub prescale counter
increments by one. When the scrub prescale counter
reaches the value stored in this register, it clears and
resumes counting starting at 0.

Address $FEF80038

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name ERROR_ADDRESS 0 0 0

Operation READ ONLY R R R

Reset 0 P X X X

Address $FEF80040
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

sc
b0

sc
b1

0 0 0 0 0 sw
en SCRUB FREQUENCY

Operation

R R R R R R R R
/W READ ZERO READ ZERO READ/WRITE

Reset

0
P

0
P

X X X X X 0
P

X X $00 P

3-52 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Note that when this register is all 0’s, the scrub prescale
counter does not increment, disabling any scrubs from
occurring. Since SCRUB_FREQUENCY is cleared to
0’s at power-up reset, scrubbing is disabled until software
programs a non-zero value into it.

Scrub Address Register

SCRUB ADDRESS These bits form the address counter used by the scrubber
for all blocks of SDRAM. The scrub address counter
increments by one each time a scrub to one location
completes to all of the blocks of SDRAM. When it
reaches all 1s, it rolls back over to all 0s and continues
counting. The SCRUB_ADDRESS counter is readable
and writable for test purposes.

Note that for each block, the most significant bits of
SCRUB ADDRESS COUNTER are meaningful only
when their SDRAM devices are large enough to require
them.

Address $FEF80048
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name 0 0 0 SCRUB ADDRESS 0 0 0

Operation R R R READ/WRITE R R R

Reset X X X 0 P X X X

Programming Model

http://www.motorola.com/computer/literature 3-53

3

ROM A Base/Size Register

Writes to this register must be enveloped by a period of time in which no
accesses to ROM/Flash Block A, occur. A simple way to provide the
envelope is to perform at least two accesses to this or another of the SMC’s
registers before and after the write.

ROM A BASE These control bits define the base address for ROM/Flash
Block A. ROM A BASE bits 0-11 correspond to PPC60x
address bits 0 - 11 respectively. For larger ROM/Flash
sizes, the lower significant bits of ROM A BASE are
ignored. This means that the block’s base address will
always appear at an even multiple of its size. ROM A
BASE is initialized to $FF0 at power-up or local bus reset.

Note that in addition to the programmed address, the first
1Mbyte of Block A also appears at $FFF00000 -
$FFFFFFFF if the rom_a_rv bit is set and the rom_b_rv
bit is cleared.

Also note that the combination of ROM_A_BASE and
rom_a_siz should never be programmed such that
ROM/Flash Block A responds at the same address as the
CSR, SDRAM, External Register Set, or any other slave
on the PowerPC bus.

rom_a_64 rom_a_64 indicates the width of ROM/Flash being used
for Block A. When rom_a_64 is cleared, Block A is 16
bits wide, where each half of SMC interfaces to 8 bits.
When rom_a_64 is set, Block A is 64 bits wide, where

Address $FEF80050
Bit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name ROM A BASE

rom
_a_64

rom
 a siz0

rom
 a siz1

rom
 a siz2

0 0 0 0 0 rom
_a_rv

rom
 a en

rom
 a w

e

Operation READ/WRITE

R R
/W

R
/W

R
/W READ ZERO

R R R R R R
/W

R
/W

R
/W

Reset $FF0 PL

V
 P

0 PL
0 PL
0 PL X

X X X X X V
 P

0 PL
0 PL

3-54 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

each half of the SMC interfaces to 32 bits. rom_a_64
matches the value that was on the RD2 pin at power-up
reset. It cannot be changed by software.

rom a siz The rom a siz control bits are the size of ROM/Flash for
Block A. They are encoded as shown in Table 3-11.

rom_a_rv rom_a_rv and rom_b_rv determine which if either of
Blocks A and B is the source of reset vectors or any other
access in the range $FFF00000 - $FFFFFFFF as shown in
the table below.

Table 3-11. ROM Block A Size Encoding

rom a siz
BLOCK

SIZE

%000 1MB

%001 2MB

%010 4MB

%011 8MB

%100 16MB

%101 32MB

%110 64MB

%111 Reserved

Table 3-12. rom_a_rv and rom_b_rv encoding

rom_a_rv rom_b_rv Result

0 0 Neither Block is the source of
reset vectors.

0 1 Block B is the source of reset
vectors.

1 0 Block A is the source of reset
vectors.

1 1 Block B is the source of reset
vectors.

Programming Model

http://www.motorola.com/computer/literature 3-55

3

rom_a_rv is initialized at power-up reset to match the
value on the RD0 pin.

rom a en When rom a en is set, accesses to Block A ROM/Flash in
the address range selected by ROM A BASE are enabled.
When rom a en is cleared, they are disabled.

rom a we When rom a we is set, writes to Block A ROM/Flash are
enabled. When rom a we is cleared, they are disabled.
Note that if rom_a_64 is cleared, only 1-byte writes are
allowed. If rom_a_64 is set, only 4-byte writes are
allowed. The SMC ignores other writes. If a valid write is
attempted and rom a we is cleared, the write does not
happen but the cycle is terminated normally.
See Table 3-13 for details of ROM/Flash accesses.

Table 3-13. Read/Write to ROM/Flash

Cycle
Transfer

Size
Alignment rom_x_64 rom_x_we Hawk Response

write 1-byte X 0 0 Normal termination, but no
write to ROM/Flash

write 1-byte X 0 1 Normal termination, write
occurs to ROM/Flash

write 1-byte X 1 X No Response

write 4-byte Misaligned X X No Response

write 4-byte Aligned 0 X No Response

write 4-byte Aligned 1 0 Normal termination, but no
write to ROM/Flash

write 4-byte Aligned 1 1 Normal termination, write
occurs to ROM/Flash

write 2,3,5,6,7,
8,32-byte

X X X No Response

read X X X X Normal Termination

3-56 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

ROM B Base/Size Register

Writes to this register must be enveloped by a period of time in which no
accesses to ROM/Flash Block B, occur. A simple way to provide the
envelope is to perform at least two accesses to this (or another of the
SMC’s registers before and after the write).

ROM B BASE These control bits define the base address for ROM/Flash
Block B. ROM B BASE bits 0-11 correspond to PPC60x
address bits 0 - 11 respectively. For larger ROM/Flash
sizes, the lower significant bits of ROM B BASE are
ignored. This means that the block’s base address will
always appear at an even multiple of its size. ROM B
BASE is initialized to $FF4 at power-up or local bus reset.

Note that in addition to the programmed address, the first
1Mbyte of Block B also appears at $FFF00000 -
$FFFFFFFF if the rom_b_rv bit is set.

Also note that the combination of ROM_B_BASE and
rom_b_siz should never be programmed such that
ROM/Flash Block B responds at the same address as the
CSR, SDRAM, External Register Set, or any other slave
on the PowerPC bus.

Address $FEF80058

Bit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name ROM B BASE

rom
_b_64

rom
 b siz0

rom
 b siz1

rom
 b siz2

0 0 0 0 0 rom
_b_rv

rom
 b en

rom
 b w

e

Operation READ/WRITE

R R
/W

R
/W

R
/W READ ZERO

R R R R R R
/W

R
/W

R
/W

Reset $FF4 PL

V
 P

0 P
L

0 P
L

0 P
L X

X X X X X V
 P

0 P
L

0 P
L

Programming Model

http://www.motorola.com/computer/literature 3-57

3

rom_b_64 rom_b_64 indicates the width of ROM/Flash
device/devices being used for Block B. When rom_b_64
is cleared, Block B is 16 bits wide, where each half of the
SMC interfaces to 8 bits. When rom_b_64 is set, Block B
is 64 bits wide, where each half of the SMC interfaces to
32 bits. rom_b_64 matches the value that was on the RD3
pin at power-up reset. It cannot be changed by software.

rom b siz The rom b siz control bits are the size of ROM/Flash for
Block B. They are encoded as shown in Table 3-14.

Table 3-14. ROM Block B Size Encoding

rom_b_rv rom_b_rv and rom_a_rv determine which if either of
Blocks A and B is the source of reset vectors or any other
access in the range $FFF00000 - $FFFFFFFF as shown in
Table 3-12.

rom_b_rv is initialized at power-up reset to match the
value on the RD1 pin.

rom b en When rom b en is set, accesses to Block B ROM/Flash in
the address range selected by ROM B BASE are enabled.
When rom b en is cleared they are disabled.

rom b siz
BLOCK

SIZE

%000 1Mbytes

%001 2Mbytes

%010 4Mbytes

%011 8Mbytes

%100 16Mbytes

%101 32Mbytes

%110 64Mbytes

%111 Reserved

3-58 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

rom b we When rom b we is set, writes to Block B ROM/Flash are
enabled. When rom b we is cleared they are disabled.
Refer back to Table 3-13 for more details.

ROM Speed Attributes Registers

rom_a_spd0,1 rom_a_spd0,1 determine the access timing used for
ROM/Flash Block A. The encoding of these bits are
shown in Table 3-15.

The device access times shown in the table are
conservative and allow time for buffers on address,
control, and data signals. For more accurate information
see the section entitled Timing Specifications for
ROM/Flash Signals further on in this manual, along with
the section titled ROM/Flash Read Timing Diagram.

Address $FEF80060
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

0 0 ro
m

 a
 s

pd
0

ro
m

 a
 s

pd
1

0 0 ro
m

 b
 s

pd
0

ro
m

 b
 s

pd
1

Operation READ ZERO READ ZERO READ ZERO

R R R
/W

R
/W

R R R
/W

R
/W

Reset X X X

X X 0
P

L
0

P
L

X X 0
P

L
0

P
L

Programming Model

http://www.motorola.com/computer/literature 3-59

3

Writes that change these bits must be enveloped by a
period of time in which no accesses to ROM/Flash Block
A, occur. A simple way to provide the envelope is to
perform at least two accesses to this or another of the
SMC’s registers before and after the write.

rom_b_spd0,1 rom_b_spd0,1 determine the access timing used for
ROM/Flash Block B. Refer to the table above.

Writes that change these bits must be enveloped by a
period of time in which no accesses to ROM/Flash, Bank
B, occur. A simple way to provide the envelope is to
perform at least two accesses to this or another of the
SMC’s registers before and after the write.

Table 3-15. ROM Speed Bit Encodings

rom_a/b_spd0,1 Approximate ROM Block A/B Device Access Time

%00 12 Clock Periods (120ns @ 100 MHz, 180ns @ 66.67 MHz)

%01 8 Clock Periods (80ns @ 100 MHz, 120ns @ 66.67 MHz)

%10 5 Clock Periods (50ns @ 100 MHz, 75ns @ 66.67 MHz)

%11 3 Clock Periods (30ns @100 MHz, 45ns @ 66.67 MHz)

3-60 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Data Parity Error Log Register

dpelog dpelog is set when a parity error occurs on the PPC60x
data bus during a PPC60x data cycle whose parity the
SMC is qualified to check. It is cleared by writing a one to
it or by power-up reset.

dpe_tt0-4 dpe_tt is the value that was on the TT0-TT4 signals when
the dpelog bit was set.

DPE_DP DPE_DP is the value that was on the DP0-DP7 signals
when the dpelog bit was set.

dpe_ckall When dpe_ckall is set, the Hawk checks data parity on all
cycles in which TA_ is asserted. When dpe_ckall is
cleared, the Hawk checks data parity on cycles when TA_
is asserted only during writes to the Hawk.

Note that the Hawk does not check parity during cycles in
which there is a qualified ARTRY_ at the same time as the
TA_.

dpe_me When dpe_me is set, the transition of the dpelog bit from
false to true causes the Hawk to pulse its machine check
interrupt request pin (MCHK0_) true. When dpe_me is
cleared, the Hawk does not assert its MCHK0_ pin based
on the dpelog bit.

GWDP The GWDP0-GWDP7 bits are used to invert the value that
is driven onto DP0-DP7 respectively during reads to the
Hawk. This allows test software to generate wrong (even)
parity on selected byte lanes. For example, to create a
parity error on DH24-DH31 and DP3 during Hawk reads,
software should set GWDP3.

Address $FEF80068
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name
dp

el
og

0 0 dp
e_

tt
0

dp
e_

tt
1

dp
e_

tt
2

dp
e_

tt
3

dp
e_

tt
4

DPE_DP

0 0 0 0 0 0 dp
e_

ck
al

l
dp

e_
m

e

GWDP

Operation

R
/C

R R R R R R R

READ ONLY

R R R R R R R
/W

R
/W READ/WRITE

Reset

0
P

X 0
P

0
P

0
P

0
P

0
P 0 P X X X X X X 0
P

L
0

P
L

0 PL

Programming Model

http://www.motorola.com/computer/literature 3-61

3

Data Parity Error Address Register

DPE_A DPE_A is the address of the last PPC60x data bus parity
error that was logged by the Hawk. It is updated only
when dpelog goes from 0 to 1.

Data Parity Error Upper Data Register

DPE_DH DPE_DH is the value on the upper half of the PPC60x
data bus at the time of the last logging of a PPC60x data
bus parity error by the Hawk. It is updated only when
dpelog goes from 0 to 1.

Address $FEF80070
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name DPE_A
Operation READ ONLY
Reset 0 PL

Address $FEF80078
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name DPE_DH
Operation READ ONLY
Reset 0 PL

3-62 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Data Parity Error Lower Data Register

DPE_DL DPE_DL is the value on the lower half of the PPC60x
data bus at the time of the last logging of a PPC60x data
bus parity error by the Hawk. It is updated only when
dpelog goes from 0 to 1.

Address $FEF80080
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name DPE_DL
Operation READ ONLY
Reset 0 PL

Programming Model

http://www.motorola.com/computer/literature 3-63

3

I2C Clock Prescaler Register

I2_PRESCALE_VAL I2_PRESCALE_VAL is a 16-bit register value that will
be used in the following formula for calculating frequency
of the I2C gated clock signal:

I2C CLOCK = SYSTEM CLOCK/
(I2_PRESCALE_VAL +1)/2

After power-up, I2_PRESCALE_VAL is initialized to
$1F3 which produces a 100KHz I2C gated clock signal
based on a 100.0MHz system clock. Writes to this
register will be restricted to 4-bytes only.

I2C Control Register

i2_start When set, the I2C master controller generates a start sequence
on the I2C bus on the next write to the I2C Transmitter Data
Register and clears the i2_cmplt bit in the I2C Status Register.
After the start sequence and the I2C Transmitter Data Register
contents have been transmitted, the I2C master controller will
automatically clear the i2_start bit and then set the i2_cmplt
bit in the I2C Status Register.

Address $FEF80090
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name I2_PRESCALE_VAL
Operation READ ZERO READ ZERO READ/WRITE
Reset X X $01F3 P

Address $FEF80098
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name
0 0 0 0 i2

_s
ta

rt
i2

_s
to

p
i2

_a
ck

ou
t

i2
_e

nb
l

Operation READ ZERO READ ZERO READ ZERO

R R R R R
/W

R
/W

R
/W

R
/W

Reset X X X

X X X X 0
PL

0
PL

0
PL

0
PL

3-64 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

i2_stop When set, the I2C master controller generates a stop sequence
on the I2C bus on the next dummy write (data=don’t care) to
the I2C Transmitter Data Register and clears the i2_cmplt bit
in the I2C Status Register. After the stop sequence has been
transmitted, the I2C master controller will automatically clear
the i2_stop bit and then set the i2_cmplt bit in the I2C Status
Register.

i2_ackout When set, the I2C master controller generates an acknowledge
on the I2C bus during read cycles. This bit should be used only
in the I2C sequential read operation and must remain cleared
for all other I2C operations. For I2C sequential read operation,
this bit should be set for every single byte received except on
the last byte in which case it should be cleared.

i2_enbl When set, the I2C master interface will be enabled for I2C
operations. If clear, reads and writes to all I2C registers are still
allowed but no I2C bus operations will be performed.

I2C Status Register

i2_datin This bit is set whenever the I2C master controller has
successfully received a byte of read data from an I2C bus slave
device. This bit is cleared after the I2C Receiver Data Register is
read.

i2_err This bit is set when both i2_start and i2_stop bits in the I2C
Control Register are set at the same time. The I2C master
controller will then clear the contents of the I2C Control

Address $FEF800A0
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name
0 0 0 0 i2

_d
at

in
i2

_e
rr

i2
_a

ck
in

i2
_c

m
pl

t

Operation READ ZERO READ ZERO READ ZERO R R R R R R R R

Reset X X X

X X X X 0
PL

0
PL

0
PL

1
PL

Programming Model

http://www.motorola.com/computer/literature 3-65

3

Register, and further writes to the I2C Control Register will not
be allowed until after the I2C Status Register is read. A read
from the I2C Status Register will clear this bit.

i2_ackin This bit is set if the addressed slave device is acknowledged to
either a start sequence or data writes from the I2C master
controller and cleared otherwise. The I2C master controller will
automatically clear this bit at the beginning of the next valid I2C
operation.

i2_cmplt This bit is set after the I2C master controller has successfully
completed the requested I2C operation and cleared at the
beginning of every valid I2C operation. This bit is also set after
power-up.

I2C Transmitter Data Register

I2_DATAWR The I2_DATAWR contains the transmit byte for I2C data
transfers. If a value is written to I2_DATAWR when the i2_start
and i2_enbl bits in the I2C Control Register are set, a start
sequence is generated immediately followed by the transmission
of the contents of the I2_DATAWR to the responding slave
device. The I2_DATAWR[24:30] is the device address, and the
I2_DATAWR[31] is the WR/RD bit (0=WRite, 1=ReaD). After
a start sequence with I2_DATAWR[31]=0, subsequent writes to
the I2C Transmitter Data Register will cause the contents of
I2_DATAWR to be transmitted to the responding slave device.
After a start sequence with I2_DATAWR[31]=1, subsequent
writes to the I2C Transmitter Data Register (data=don’t care)
will cause the responding slave device to transmit data to the I2C
Receiver Data Register. If a value is written to I2_DATAWR
(data=don’t care) when the i2_stop and i2_enbl bits in the I2C
Control Register are set, a stop sequence is generated.

Address $FEF800A8
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name I2_DATAWR
Operation READ ZERO READ ZERO READ ZERO READ/WRITE
Reset X X X 0 PL

3-66 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

I2C Receiver Data Register

I2_DATARD The I2_DATARD contains the receive byte for I2C data
transfers. During I2C sequential read operation, the current
receive byte must be read before any new one can be brough in.
A read of this register will automatically clear the i2_datin bit in
the I2C Status Register.

SDRAM Enable and Size Register (Blocks E,F,G,H)

Writes to this register must be enveloped by a period of time in which no
accesses to SDRAM occur. The requirements of the envelope are that all
SDRAM accesses must have completed before the write starts and none
should begin until after the write is done. A simple way to do this is to
perform at least two read accesses to this or another register before and
after the write.

Additionally, sometime during the envelope, before or after the write, all
of the SDRAMs’ open pages must be closed and the Hawk’s open page
tracker reset. The way to do this is to allow enough time for at least one
SDRAM refresh to occur by waiting for the 32-bit Counter (see section
further on) to increment at least 100 times. The wait period needs to
happen during the envelope.

Address $FEF800B0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name I2_DATARD
Operation READ ZERO READ ZERO READ ZERO READ

Reset X X X 0 PL

Address $FEF800C0

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

ra
m

 e
 e

n
0 0 0 ra

m
 e

 s
iz

0
ra

m
 e

 s
iz

1
ra

m
 e

 s
iz

2
ra

m
 e

 s
iz

3
ra

m
 f

en
0 0 0 ra

m
 f

si
z0

ra
m

 f
si

z1
ra

m
 f

si
z2

ra
m

 f
si

z3
ra

m
 g

 e
n

0 0 0 ra
m

 g
 s

iz
0

ra
m

 g
 s

iz
1

ra
m

 g
 s

iz
2

ra
m

 g
 s

iz
3

ra
m

 h
 e

n
0 0 0 ra

m
 h

 s
iz

0
ra

m
 h

 s
iz

1
ra

m
 h

 s
iz

2
ra

m
 h

 s
iz

3

Operation

R
/W

R R R R
/W

R
/W

R
/W

R
/W

R
/W

R R R R
/W

R
/W

R
/W

R
/W

R
/W

R R R R
/W

R
/W

R
/W

R
/W

R
/W

R R R R
/W

R
/W

R
/W

R
/W

Reset

0
P

L
X X X 0

P
0

P
0

P
0

P

0
P

L
X X X 0

P
0

P
0

P
0

P

0
P

L
X X X 0

P
0

P
0

P
0

P

0
P

L
X X X 0

P
0

P
0

P
0

P

Programming Model

http://www.motorola.com/computer/literature 3-67

3

ram e/f/g/h en ram e/f/g/h en enables accesses to the corresponding block of
SDRAM when set, and disables them when cleared.

Note that ram a/b/c/d en are located at $FEF80010 (refer to the
section on SDRAM Enable and Size Register (Blocks A,B,C,D)
in a previous section). They operate the same for blocks A-D as
these bits do for blocks E-H.

ram e/f/g/h siz0-3 These control bits define the size of their corresponding block of
SDRAM. Note that ram a/b/c/d siz0-3 are located at
$FEF80010. They operate identically for blocks A-D as these
bits do for blocks E-H. The table associated with the previous
section on blocks A,B,C,D shows how these bits relate to the
block configuration.

SDRAM Base Address Register (Blocks E/F/G/H)

Writes to this register must be enveloped by a period of time in which no
accesses to SDRAM occur. The requirements of the envelope are that all
SDRAM accesses must have completed before the write starts and none
should begin until after the write is done. A simple way to do this is to
perform at least two read accesses to this or another register before and
after the write.

Additionally, sometime during the envelope, before or after the write, all
of the SDRAMs’ open pages must be closed and the Hawk’s open page
tracker reset. The way to do this is to allow enough time for at least one
SDRAM refresh to occur by waiting for the 32-Bit Counter to increment
at least 100 times. The wait period needs to happen during the envelope.

RAM E/F/G/H BASE These control bits define the base address for their block’s
SDRAM. RAM E/F/G/H BASE bits 0-7/8-15/16-23/24-31
correspond to PowerPC60x address bits 0 - 7. For larger SDRAM
sizes, the lower significant bits of RAM E/F/G/HBASE are
ignored. This means that the block’s base address will always
appear at an even multiple of its size. Remember that bit 0 is
MSB.

Address $FEF800C8
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name RAM E BASE RAM F BASE RAM G BASE RAM H BASE
Operation READ/WRITE READ/WRITE READ/WRITE READ/WRITE
Reset 0 PL 0 PL 0 PL 0 PL

3-68 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Note that RAM A/B/C/D BASE are located at $FEF80018
(refer to the section titled SDRAM Base Address Register
(Blocks A/B/C/D) for more information). They operate the
same for blocks A-D as these bits do for blocks E-H.

Also note that the combination of RAM_X_BASE and
ram_x_siz should never be programmed such that SDRAM
responds at the same address as the CSR, ROM/Flash,
External Register Set, or any other slave on the PowerPC bus.

SDRAM Speed Attributes Register

The SDRAM Speed Attributes Register should be programmed based on
the SDRAM device characteristics and the Hawk’s operating frequency to
ensure reliable operation.

In order for writes to this register to work properly they should be
separated from any SDRAM accesses by a refresh before the write and by
another refresh after the write. The refreshes serve two purposes: 1) they
make sure that all of the SDRAMs are idle ensuring that mode-register-set
operations for cl3 updates work properly, and 2) they make sure that no
SDRAM accesses happen during the write. A simple way to meet these
requirments is to use the following sequence:

1. Make sure all accesses to SDRAM are done.

2. Wait for the “32-Bit Counter” (refer to section further on) to
increment at least 100 times.

3. Perform the write/writes to this register (and other SMC registers if
desired).

4. Wait again for the “32-Bit Counter” to increment at least 100 times
before resuming accesses to SDRAM.

Address $FEF800D0
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

0 0 0 cl
3

0 tr
c0

tr
c1

tr
c2 0 0 tr
as

0
tr

as
1

0 0 sw
r_

dp
ll

td
p

0 0 0 tr
p 0 0 0 tr
cd 0 0 0 0 0 0 0 0

Operation

R R R R
/W

R R
/W

R
/W

R
/W

R R R
/W

R
/W

R R R
/W

R
/W

R R R R
/W

R R R R
/W

R R R R R R R R

Reset

X X X 1
P

X 0
P

1
P

1
P

X X 1
P

1
P

X X 1
P

1
P

X X X 1
P

X X X 1
P

X X X X X X X X

Programming Model

http://www.motorola.com/computer/literature 3-69

3

cl3 When cl3 is cleared, the SMC assumes that the SDRAM runs
with a CAS_ latency of 2. When cl3 is set, the SMC assumes that
it runs with a CAS_ latency of 3. Note that writing so as to
change cl3 from 1 to 0 or vice-versa causes the SMC to perform
a mode-register-set operation to the SDRAM array. The mode-
register-set operation updates the SDRAM’s CAS latency to
match cl3.

trc0,1,2 Together trc0,1,2 determine the minimum number of clock
cycles that the SMC assumes the SDRAM requires to satisfy its
Trc parameter. These bits are encoded as follows:

tras0,1 Together tras0,1 determine the minimum number of clock
cycles that the SMC assumes the SDRAM requires to satisfy its
tRAS parameter. These bits are encoded as follows:

Table 3-16. Trc Encoding

trc0,1,2 Minimum Clocks for Trc

%000 8

%001 9

%010 10

%011 11

%100 reserved

%101 reserved

%110 6

%111 7

Table 3-17. tras Encoding

tras0,1 Minimum Clocks for tras

%00 4

%01 5

%10 6

%11 7

3-70 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

swr_dpl swr_dpl causes the SMC to always wait until four clocks after
the write command portion of a single write before allowing a
precharge to occur. This function may not be required. If such is
the case, swr_dpl can be cleared by software.

tdp tdp determines the minimum number of clock cycles that the
SMC assumes the SDRAM requires to satisfy its Tdp parameter.
When tdp is 0, the minimum time provided for Tdp is 1 clock.
When tdp is 1, the minimum is 2 clocks.

trp trp determines the minimum number of clock cycles that the
SMC assumes the SDRAM requires to satisfy its Trp parameter.
When trp is 0, the minimum time provided for Trp is 2 clocks.
When trp is 1 the minimum is 3 clocks.

trcd trcd determines the minimum number of clock cycles that the
SMC assumes the SDRAM requires to satisfy its Trcd
parameter. When trcd is 0, the minimum time provided for Trcd
is 2 clocks. When trcd is 1 the minimum is 3 clocks.

Address Parity Error Log Register

apelog apelog is set when a parity error occurs on the PPC60x address
bus during any PPC60x address cycle (TS_ asserted to AACK_
asserted). It is cleared by writing a one to it or by power-up reset.

ape_tt0-4 ape_tt is the value that was on the TT0-TT4 signals when the
apelog bit was set.

Address $FEF800E0
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

ap
el

og
0 0 ap

e_
tt

0
ap

e_
tt

1
ap

e_
tt

2
ap

e_
tt

3
ap

e_
tt

4
0 0 0 0 ap

e_
ap

0
ap

e_
ap

1
ap

e_
ap

2
ap

e_
ap

3
0 0 0 0 0 0 0 ap

e_
m

e

Operation

R
/C

R R
/W READ ZERO

Reset

0
P

X X 0
P

0
P

0
P

0
P

0
P

X X X X 0
P

0
P

0
P

0
P

X X X X X X X 0
P

L X

Programming Model

http://www.motorola.com/computer/literature 3-71

3

ape_ap0-3 APE_AP is the value that was on the AP0-AP3 signals when the
apelog bit was set.

ape_me When ape_me is set, the transition of the apelog bit from false
to true causes the Hawk to pulse its machine check interrupt
request pin (MCHK0_) true. When ape_me is cleared, apelog
does not affect the MCHK0_ pin.

Address Parity Error Address Register

APE_A APE_A is the address of the last PPC60x address bus parity
error that was logged by the Hawk. It is updated only when
apelog goes from 0 to 1.

Address $FEF800E8
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name APE_A
Operation READ ONLY
Reset 0 PL

3-72 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

32-Bit Counter

CTR32 CTR32 is a 32-bit, free-running counter that increments
once per microsecond if the CLK_FREQUENCY register
has been programmed properly. Notice that CTR32 is
cleared by power-up and local reset.

Note When the system clock is a fractional frequency, such as
66.67MHz, CTR32 will count at a fractional amount faster or
slower than 1 MHz, depending on the programming of the
CLK_FREQUENCY Register.

External Register Set

EXTERNAL REGISTER SET The EXTERNAL REGISTER SET is user provided and
is external to the Hawk. It is enabled only when the
tben_en bit is cleared. When the tben_en bit is set, the
EXTERNAL REGISTER SET is disabled and the Hawk
does not respond in its range except for the tben register at
$FEF88300.

The tben register (which is internal to Hawk) responds
only when tben_en is set.

Address $FEF80100
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name CTR32
Operation READ/WRITE
Reset 0 PL

Address $FEF88000 - $FEF8FFF8
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

EXTERNAL REGISTER SET

Operation READ/WRITE
Reset X PL

Programming Model

http://www.motorola.com/computer/literature 3-73

3

The Hawk’s EXTERNAL REGISTER SET interface is
similar to that for ROM/Flash Block A and B. In fact,
another name for the External Register Set is ROM/Flash
Block C. The differences between Blocks A/B and C are
that the following parameters are fixed rather than
programmable for Block C.

1. The device speed for Block C is fixed at 11 Clocks.

2. The width for Block C is fixed at 64 bits.

3. The address range for Block C is fixed at $FEF88000-
$FEF8FFF8 ($FEF98000-$FEF9FFF8 when Hawk is
configured for the alternate CSR base address).

4. Block C is never used for reset vectors.

5. Block C is always enabled unless the tben_en bit is set.

6. Writes to Block C cannot be disabled.

Note The fact that the assumed width is 64 bits does not require that all
64 bits have to be used. The system designer can connect the
needed width device to the bits desired for the application.
Devices less than 64 bits will cause holes for addresses
corresponding to non-connected bits.

tben Register

The tben Register is only enabled when the tben_en bit in the Revision
ID/General Control Register is set. When tben_en is cleared, the External
Register Set interface is enabled and appears in its designated range.

Address $FEF88300
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Name

0 0 p1
_t

be
n

p0
_t

be
n

0 0 0 0

Operation

R R R
/W

R
/W

R R R R

READ ZERO READ ZERO READ ZERO

Reset

X X 1
P

L
1

P
L

X X X X

X X X

3-74 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

When tben_en is set, the External Register Set interface is disabled and the
SMC does not respond to accesses in its designated range except that it
responds to the address of this, tben register.

p1_tben When the tben_en bit is set, the L2CLM_ input pin becomes the
P1_TBEN output pin and it tracks the value on p1_tben. When
p1_tben is 0, the P1_TBEN pin is low and when p1_tben is 1,
the P1_TBEN pin is high.

When the tben_en bit is cleared, p1_tben has no effect on any
pin.

p0_tben When the tben_en bit is set, the ERCS_ output pin becomes the
P1_TBEN output pin and it tracks the value on p0_tben. When
p0_tben is 0, the P0_TBEN pin is low and when p1_tben is 1,
the P0_TBEN pin is high.

When the tben_en bit is cleared, p0_tben has no effect on any
pin.

Note that when tben_en is high, L2CLM_ cannot be driven by
an external L2 cache controller and no External Register Set
devices can be controlled.

Software Considerations
This section contains information that will be useful in programming a
system that uses the Hawk.

Programming ROM/Flash Devices

Those who program devices to be controlled by the Hawk should make
note of the address mapping that is shown in Table 3-3 and in Table 3-4.
For example, when using 8-bit devices, the code will be split so that every
other 4-byte segment goes in each device.

Software Considerations

http://www.motorola.com/computer/literature 3-75

3

Writing to the Control Registers

Software should not change control register bits that affect SDRAM
operation while SDRAM is being accessed. Because of pipelining,
software should always make sure that the two accesses before and after
the updating of critical bits are not SDRAM accesses.
A possible scenario for trouble would be to execute code out of SDRAM
while updating the critical SDRAM control register bits. The preferred
method is to be executing code out of ROM/Flash and avoiding SDRAM
accesses while updating these bits.

Some registers have additional requirements for writing. For more
information refer to the register sections in this chapter titled SDRAM
Enable and Size Register (Blocks A,B,C,D), SDRAM Base Address
Register (Blocks A/B/C/D), SDRAM Enable and Size Register (Blocks
E,F,G,H), SDRAM Base Address Register (Blocks E/F/G/H), and SDRAM
Speed Attributes Register.

Since software has no way of controlling refresh/scrub accesses to
SDRAM, the hardware is designed so that updating control bits
coincidentally with refreshes is not a problem.

As with SDRAM control bits, software should not change control bits that
affect ROM/Flash while the affected Block is being accessed. This
generally means that the ROM/Flash size, base address, enable, write
enable, etc. are changed only while executing initially in the reset vector
area ($FFF00000 - $FFFFFFFF).

Initializing SDRAM Related Control Registers

In order to establish proper SDRAM operation, software must configure
control register bits in Hawk that affect each SDRAM block’s speed, size,
base address, and enable. The SDRAM speed attributes are the same for all
blocks and are controlled by one 32-bit register. The size, base address and
enable can be different for each block and are controlled in individual 8-
bit registers.

SDRAM Speed Attributes

The SDRAM speed attributes come up from power-up reset initialized to
the slowest settings that Hawk is capable of. This allows SDRAM accesses
to be performed before the SDRAM speed attributes are known.

3-76 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

An example of a need for this is when software requires some working
memory that it can use while gathering and evaluating SDRAM device
data from serial EEPROM’s. Once software knows the SDRAM speed
parameters for all blocks, it should discontinue accessing SDRAM for at
least one refresh period before and after it programs the SDRAM speed
attribute bits.

SDRAM Size
The SDRAM size control bits come up from power-up reset cleared to
zero. Once software has determined the correct size for an SDRAM block,
it should set the block’s size bits to match. The value programmed into the
size bits tells the Hawk how big the block is (for map decoding), and how
to translate that block’s 60x addresses to SDRAM addresses.

Programming a block’s size to non-zero also allows it to participate in
scrubbing if scrubbing is enabled.

After software programs the size bits, it should wait for a refresh to happen
before beginning to access SDRAM.

I2C EEPROMs

Most of the information needed to program the SDRAM speed attributes
and size is provided by EEPROM devices that are connected to Hawk’s
I2C bus. The EEPROM devices contain data in a specific format called
Serial Presence Detect (SPD).

I2C EEPROMs that are used for SPD can be wired to appear at one of 8
different device locations. Board designers should establish an I2C
EEPROM addressing scheme that will allow software to know which I2C
address to use to find information for each SDRAM block. For example,
hardware could always place the I2C EEPROM for SDRAM block A at the
first address, block B at the second, etc. Whatever addressing scheme is
used should also deal with cases where multiple blocks are described by
one I2C EEPROM.

SDRAM Base Address and Enable

Each block needs to be programmed for a unique base address that is an
even multiple of its size. Once a block’s speed attributes, size, and base
address have been programmed and time for at least one refresh has
passed, it can be enabled.

Software Considerations

http://www.motorola.com/computer/literature 3-77

3

SDRAM Control Registers Initialization Example

The following is a possible sequence for initializing SDRAM control
registers:

1. Get a small piece of SDRAM for software to use for this routine
(optional).
This routine assumes that SDRAM related control bits are still at the
power-up-reset default settings. We will use a small enough piece of
SDRAM that the address signals that are affected by SDRAM size
will not matter.
For each SDRAM block:

a. Set the block’s base address to some even multiple of 32Mbytes
(refer to the section titled SDRAM Base Address Register
(Blocks A/B/C/D) for more information.)

b. Set the block’s size to 4Mx16 and enable it (refer to the section
titled SDRAM Enable and Size Register (Blocks A,B,C,D) for
more information.)

c. Test the first 1Mbyte of the block.

d. If the test fails, disable the block, clear its size to 0Mbyutes,
disable it and then repeat steps 1 through 5 with the next block.
If the test passes, go ahead and use the first 1M of the block.

2. Using the I2C bus, determine which memory blocks are present.
Using the addressing scheme established by the board designer,
probe for SPD’s to determine which blocks of SDRAM are present.
SPD byte 0 could be used to determine SPD presence. SPD Byte 5
indicates the number of SDRAM blocks that belong to an SPD.

3. Obtain the CAS latency information for all blocks that are present
to determine whether to set or to clear the cl3 bit.
For each SDRAM block that is present:

a. Check SPD byte 18 to determine which CAS latencies are
supported.

b. If a CAS latency of 2 is supported, then go to step 3. Otherwise,
a CAS latency of 3 is all that is supported for this block.

3-78 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

c. If a CAS latency of 2 is supported, check SPD byte 23 to
determine the CAS_latency _2 cycle time. If the CAS_latency_2
cycle time is less than or equal to the period of the system clock
then this block can operate with a CAS latency of 2. Otherwise
a CAS latency of 3 is all that is supported for this block.
If any block does not support a CAS latency of 2, then cl3 is to
be set. If all of the blocks support a CAS latency of 2, then the
cl3 bit is to be cleared.
Do not update the cl3 bit at this point. You will use the
information from this step later.

4. Determine the values to use for tras, trp, trcd, and trc
The values to use for tras, trp, trcd and trc can be obtained from
the SPD. The tras bits determine the minimum tRAS time produced
by the Hawk. The trp bit determines the minimum tRP time
produced by the Hawk, etc. Each set of bits should accommodate
the slowest block of SDRAM. The SPD parameters are specified in
nanoseconds and have to be converted to 60x clock periods for the
Hawk.
Use the following table to convert SPD bytes 27, 29 and 30 to the
correct values for tras, trp, trcd and trc.
Do not actually update these bits in the Hawk at this time. You will
use the information from this step later.

Table 3-18. Deriving tras, trp, trcd and trc Control Bit Values from SPD
Information

Control Bits Parameter Parameter Expressed
in CLK Periods

Possible Control Bit Values

$FEF800D1
bits 2,3
(tras)

tRAS
(SPD Byte

30)

tRAS_CLK = tRAS/T
(T = CLK Period
in nanoseconds)

See Notes 1, 2 and 9

0.0 < tRAS_CLK <= 4.0 tras =%00

4.0 < tRAS_CLK <=5.0 tras =%01

5.0 < tRAS_CLK <= 6.0 tras =%10

6.0 < tRAS_CLK <= 7.0 tras =%11

7.0 < tRAS_CLK Illegal

Software Considerations

http://www.motorola.com/computer/literature 3-79

3

$FEF800D2
bit 3
(trp)

tRP
(SPD Byte

27)

tRP_CLK = tRP/T
(T = CLK Period
in nanoseconds)

See Notes 3, 4 and 9

0.0 < tRP_CLK <= 2 trp =%0

2.0 < tRP_CLK <= 3 trp =%1

3 < tRP_CLK Illegal

$FEF800D2
bit 7

(trcd)

tRCD
(SPD Byte

29)

tRCD_CLK = tRCD/T
(T = CLK Period
in nanoseconds)

See Notes 5, 6 and 9

0.0 < tRCD_CLK <= 2 trcd =%0

2.0 < tRCD_CLK <= 3 trcd =%1

3 < tRCD_CLK Illegal

$FEF800D0
bits 5,6,7

(trc)

tRC
(SPD Bytes
30 and 27)

tRC_CLK = (tRAS +
tRP)/T

(T = CLK Period
in nanoseconds)

See Notes 7, 8 and 9

0.0 < tRC_CLK <= 6.0 trc =%110

6.0 < tRC_CLK <= 7.0 trc =%111

7.0 < tRC_CLK <= 8.0 trc =%000

8.0 < tRC_CLK <= 9.0 trc =%001

9.0 < tRC_CLK <= 10.0 trc =%010

10.0 < tRC_CLK <=
11.0

trc =%011

11.0 < tRC_CLK illegal

Table 3-18. Deriving tras, trp, trcd and trc Control Bit Values from SPD
Information

Control Bits Parameter Parameter Expressed
in CLK Periods

Possible Control Bit Values

3-80 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

Notes 1. Use tRAS from the SDRAM block that has the slowest
tRAS.

2. tRAS_CLK is tRAS expressed in CLK periods.

3. Use tRP from the SDRAM block that has the slowest tRP.

4. tRP_CLK is tRP expressed in CLK periods.

5. Use tRCD from the SDRAM block that has the slowest
tRCD.

6. tRCD_CLK is tRCD expressed in CLK periods.

7. Use tRC from the SDRAM block that has the slowest tRC.

8. tRC_CLK is tRC expressed in CLK periods.

9. Remember that CLK is the Hawk’s 60x clock input pin.

5. Determine the size for each block that is present.
(Do not actually program the Hawk’s size bits at this point. You use
this information to program them later.)
Each block’s size can be determined using the following algorithm:

a. Calculate the number of rows in each device using SPD byte 3.
If the number of rows is ROWS and the value in SPD byte 3 is R,
then ROWS=2R.

b. Calculate the number of columns in each device using SPD byte
4. If the number of columns is COLUMNS and the value in SPD
byte 4 is C, then
COLUMNS=2C.

c. Calculate the total number of addresses within each device. If the
total number of addresses in a device is A, then
A=ROWS X COLUMNS

d. Calculate the total number of locations in the block using the
results of step 3 and SPD byte 17. If the total number of locations
in the block is L, and the value in byte 17 is 4, then
L = A x 4
or
L = 2R X 2C X 4
(Note that the Hawk only works if byte 17 is 4).

e. Obtain the primary device width from SPD byte 13.

f. Determine the size bits based on the results of steps d and e using
the table on the next page.

Software Considerations

http://www.motorola.com/computer/literature 3-81

3

Notes 1. Total Number of block Locations (L) is 2R x 2C x 4 where
R is the value in SPD byte 3 and C is the value in SPD byte 4.

2. Primary Device Width is from SPD byte 13.

3. Block Size is the total number of block locations (L) x 8
bytes.

4. ram_x_siz refers to ram_a_siz, ram_b_siz, ram_c_siz, etc.
(Refer to the sections titled SDRAM Enable and Size Register
(Blocks A,B,C,D) and SDRAM Enable and Size Register (Blocks
E,F,G,H) for more information.

6. Make sure the software is no longer using SDRAM, and disable the
block that was being used.

7. Wait for at least one SDRAM refresh to complete. A simple way to
do this is to wait for the 32-bit counter to increment at least 100
times. (Refer to the section titled “32-Bit Counter” for more
information). Note that the refdis control bit must not be set in the
ECC Control Register.

Table 3-19. Programming SDRAM SIZ Bits

Total Number of
Locations within
the Block (L) 1

Primary
Device Width 2

Block Size 3 Value to be
programmed into

the Block’s
ram_x_siz bits 4

4M 16 32Mbytes %0001

8M 8 64Mbytes %0010

8M 16 64Mbytes %0011

16M 4 128Mbytes %0100

16M 8 128Mbytes %0101

16M 16 128Mbytes %0110

32M 4 256Mbytes %0111

32M 8 256Mbytes %1000

64M 4 512Mbytes %1001

3-82 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

8. Now that at least one refresh has occurred since SDRAM was last
accessed, it is okay to write to the SDRAM control registers.

a. Program the SDRAM Speed Attributes Register using the
information obtained in steps 3 and 4 and the fact that the
swr_dp and tdp bits should be set to 1’s.

b. Program the SDRAM Base Address Register (Blocks A/B/C/D)
and the SDRAM Base Address Register (Blocks E/F/G/H). Each
block’s base address should be programmed so that it is an even
multiple of its size. (The size information was obtained in step
5). If the isa_hole bit is to be set this may be a good time to do
that also. Refer to the Revision ID/General Control Register
section for more information.

c. Program the SDRAM Enable and Size Register (Blocks
A,B,C,D) and the SDRAM Enable and Size Register (Blocks
E,F,G,H). Use the information from step 5 for this. Only those
blocks that exist should be enabled. Also, only those that exist
should be programmed with a non-zero size.

9. Wait for at least one SDRAM refresh to complete. A simple way to
do this is to wait for the 32-bit counter to increment at least 100
times (refer to the section on the 32-Bit Counter for more
information). Note that the refdis control bit must not be set in the
ECC Control Register.

10. SDRAM is now ready to use.

Software Considerations

http://www.motorola.com/computer/literature 3-83

3

Optional Method for Sizing SDRAM

Generally SDRAM block sizes can be determined by using SPD
information (refer to the previous section on SDRAM Control Registers
Initialization example). Another method for accomplishing this is as
follows:

1. Initialize the SMC’s control register bits to a known state.

a. Clear the isa_hole bit (refer to the section titled Vendor/Device
Register for more information.)

b. Make sure the CLK Frequency Register matches the operating
frequency.

c. Wait for at least one SDRAM refresh to complete. A simple way
to do this is to wait for the 32-bit counter to increment at least
100 times (refer to the section on 32-Bit Counter for more
information). Note that the refdis control bit must not be set in
the ECC Control Register.

d. Make sure that the SDRAM Speed Attributes Register contains
its power-up reset values. If not, make sure that the values match
the actual characteristics of the SDRAM being used.

e. Make sure the following bits are initialized as follows:
refdis = 0
rwcb = 0
derc = 1
scien = 0
dpien = 0
sien = 0
mien = 0
mbe_me = 0
SCRUB_FREQUENCY = $00
(Refer to the ECC Control Register section and the
Scrub/Refresh Register section for more information).

f. Make sure that ROM/Flash banks A and B are not enabled to
respond in the range $00000000 - $20000000. (Refer to the
section on ROM A Base/Size Register and ROM B Base/Size
Register for more information.)

g. Make sure that no other devices are set up to respond in the range
$00000000 - $20000000.

3-84 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

2. For each of the Blocks A through H:

a. Set the block’s base address to $00000000. Refer to the sections
titled SDRAM Base Address Register (Blocks A/B/C/D) and
SDRAM Enable and Size Register (Blocks E,F,G,H).

b. Enable the block and make sure that the other seven blocks are
disabled. Refer to the same sections as referenced in the previous
step.

c. Set the block’s size control bits. Start with the largest possible
(512MB). Refer to the same sections as referenced in the
previous step.

d. Wait for at least one SDRAM refresh to complete.

e. Write a unique 64-bit data pattern to each one of a specified list
of addresses. The list of addresses to be written varies depending
on the size that is currently being checked. The address lists are
shown in the table below.

f. Read back all of the addresses that have been written.
If all of the addresses still contain exactly what was written, then
the block’s size has been found. It is the size for which it is
currently programmed.
If any of the addresses do not contain exactly what was written,
then the block’s memory size is less than that for which it is
programmed. Sizing needs to continue for this block by
programming its control bits to the next smaller size, waiting for
at least one refresh to complete, and repeating steps e and f.

g. If no match is found for any size then the block is unpopulated
and has a size of 0MB. Its size should be programmed to 0.

Software Considerations

http://www.motorola.com/computer/literature 3-85

3

Notes 1. 16Mx8 and 16Mx4 are the same. If the real size is either
one of these, this algorithm will program for 16Mx8
regardless of whether the SDRAM size is 16Mx8 or 16Mx4.
This is not a problem because the Hawk behaves identically
when programmed for either size.

2. 8Mx16 and 8Mx8 are the same. The same idea that applies
to 16Mx8 and 16Mx4 applies to them.

3. This needed only to check for non-zero size.

3. Wait enough time to allow at least 1 SDRAM refresh to occur before
beginning any SDRAM accesses.

Table 3-20. Address Lists for Different Block Size Checks

512MB
(64Mx4)

256MB
(32Mx8)

256MB
(32Mx4)

128MB
(16Mx16)

128MB
(16Mx8)1

128MB
(16Mx4)1

$00000000

$00008000

$10000000

$00000000

$00004000

$08000000

$00000000

$00008000

$00000000

$04000000

$00000000

$00004000

$00000000

$00004000

64MB

(8Mx16)2
64MB

(8Mx8)2
32MB

(4Mx16)3

$00000000

$00002000

$00000000

$00002000

$00000000

$00001000

3-86 Computer Group Literature Center Web Site

System Memory Controller (SMC)

3

ECC Codes
When the Hawk reports a single-bit error, software can use the syndrome
that was logged by the Hawk to determine which bit was in error. Table
3-21 shows the syndrome for each possible single bit error. Table 3-22
shows the same information ordered by syndrome.

Table 3-21. Syndrome Codes Ordered by Bit in Error

Bit Syndrome Bit Syndrome Bit Syndrome Bit Syndrome Bit Syndrome

rd0 $4A rd16 $92 rd32 $A4 rd48 $29 ckd0 $01

rd1 $4C rd17 $13 rd33 $C4 rd49 $31 ckd1 $02

rd2 $2C rd18 $0B rd34 $C2 rd50 $B0 ckd2 $04

rd3 $2A rd19 $8A rd35 $A2 rd51 $A8 ckd3 $08

rd4 $E9 rd20 $7A rd36 $9E rd52 $A7 ckd4 $10

rd5 $1C rd21 $07 rd37 $C1 rd53 $70 ckd5 $20

rd6 $1A rd22 $86 rd38 $A1 rd54 $68 ckd6 $40

rd7 $19 rd23 $46 rd39 $91 rd55 $64 ckd7 $80

rd8 $25 rd24 $49 rd40 $52 rd56 $94

rd9 $26 rd25 $89 rd41 $62 rd57 $98

rd10 $16 rd26 $85 rd42 $61 rd58 $58

rd11 $15 rd27 $45 rd43 $51 rd59 $54

rd12 $F4 rd28 $3D rd44 $4F rd60 $D3

rd13 $0E rd29 $83 rd45 $E0 rd61 $38

rd14 $0D rd30 $43 rd46 $D0 rd62 $34

rd15 $8C rd31 $23 rd47 $C8 rd63 $32

ECC Codes

http://www.motorola.com/computer/literature 3-87

3

Table 3-22. Single Bit Errors Ordered by Syndrome Code

Syn-
drome

Bit Syn-
drome

Bit Syn-
drome

Bit Syn-
drome

Bit Syn-
drome

Bit Syn-
drome

Bit Syn-
drome

Bit Syn-
drome

Bit

$00 - $20 ckd5 $40 ckd6 $60 - $80 ckd7 $A0 - $C0 - $E0 rd45

$01 ckd0 $21 - $41 - $61 rd42 $81 - $A1 rd38 $C1 rd37 $E1 -

$02 ckd1 $22 - $42 - $62 rd41 $82 - $A2 rd35 $C2 rd34 $E2 -

$03 - $23 rd31 $43 rd30 $63 - $83 rd29 $A3 - $C3 - $E3 -

$04 ckd2 $24 - $44 - $64 rd55 $84 - $A4 rd32 $C4 rd33 $E4 -

$05 - $25 rd8 $45 rd27 $65 - $85 rd26 $A5 - $C5 - $E5 -

$06 - $26 rd9 $46 rd23 $66 - $86 rd22 $A6 - $C6 - $E6 -

$07 rd21 $27 - $47 - $67 - $87 - $A7 rd52 $C7 - $E7 -

$08 ckd3 $28 - $48 - $68 rd54 $88 - $A8 rd51 $C8 rd47 $E8 -

$09 - $29 rd48 $49 rd24 $69 - $89 rd25 $A9 - $C9 - $E9 rd4

$0A - $2A rd3 $4A rd0 $6A - $8A rd19 $AA - $CA - $EA -

$0B rd18 $2B - $4B - $6B - $8B - $AB - $CB - $EB -

$0C - $2C rd2 $4C rd1 $6C - $8C rd15 $AC - $CC - $EC -

$0D rd14 $2D - $4D - $6D - $8D - $AD - $CD - $ED -

$0E rd13 $2E - $4E - $6E - $8E - $AE - $CE - $EE -

$0F - $2F - $4F rd44 $6F - $8F - $AF - $CF - $EF -

$10 ckd4 $30 - $50 - $70 rd53 $90 - $B0 rd50 $D0 rd46 $F0 -

$11 - $31 rd49 $51 rd43 $71 - $91 rd39 $B1 - $D1 - $F1 -

$12 - $32 rd63 $52 rd40 $72 - $92 rd16 $B2 - $D2 - $F2 -

$13 rd17 $33 - $53 - $73 - $93 - $B3 - $D3 rd60 $F3 -

$14 - $34 rd62 $54 rd59 $74 - $94 rd56 $B4 - $D4 - $F4 rd12

$15 rd11 $35 - $55 - $75 - $95 - $B5 - $D5 - $F5 -

$16 rd10 $36 - $56 - $76 - $96 - $B6 - $D6 - $F6 -

$17 - $37 - $57 - $77 - $97 - $B7 - $D7 - $F7 -

$18 - $38 rd61 $58 rd58 $78 - $98 rd57 $B8 - $D8 - $F8 -

$19 rd7 $39 - $59 - $79 - $99 - $B9 - $D9 - $F9 -

$1A rd6 $3A - $5A - $7A rd20 $9A - $BA - $DA - $FA -

$1B - $3B - $5B - $7B - $9B - $BB - $DB - $FB -

$1C rd5 $3C - $5C - $7C - $9C - $BC - $DC - $FC -

$1D - $3D rd28 $5D - $7D - $9D - $BD - $DD - $FD -

$1E - $3E - $5E - $7E - $9E rd36 $BE - $DE - $FE -

$1F - $3F - $5F - $7F - $9F - $BF - $DF - $FF -

4-1

44Hawk Programming Details

Introduction
This chapter contains details of several programming functions associated
with the Hawk ASIC chip.

PCI Arbitration
PCI arbitration must be provided by the host board.

Hawk MPIC External Interrupts

The MCPN765 Hawk MPIC is fully compliant with the industry standard
Multi-Processor Interrupt Controller Specification. Following a power-up
reset, the MPIC is configured to operate in the parallel interrupt delivery
mode on the MCPN765 series:

Table 4-1. MPIC Interrupt Assignments

MPIC
IRQ

Edge/Level Polarity Interrupt Source Notes

IRQ0 Level High PBC (8259) 1

IRQ1 Level Low TL16C550 UART 3

IRQ2 Level Low PCI-Ethernet 1 (On front Panel)

IRQ3 Level Low Hawk WDT1O_L / WDT2_L
(resistor population option)

IRQ4 Level Low PCI - PCI Bridge 21554

IRQ5 Level Low CompactPCI Bus INTA#

IRQ6 Level Low CompactPCI Bus INTB#

IRQ7 Level Low CompactPCI Bus INTC#

IRQ8 Level Low CompactPCI Bus INTD#

4-2 Computer Group Literature Center Web Site

Hawk Programming Details

4

Notes: 1. Interrupt from the PCI/ISA Bridge.

2. This is the wired OR of PMC 1 and PMC 2 slot interrupts.

3. This is the logical OR of the four UARTs.

8259 Interrupts

There are 15 interrupt requests supported by the Peripheral Bus Controller
(PBC). These 15 interrupts are ISA-type interrupts that are functionally
equivalent to two 82C59 interrupt controllers. Except for IRQ0, IRQ1,
IRQ2, IRQ8_, and IRQ13, each of the interrupt lines can be configured
for either edge-sensitive mode or level-sensitive mode by programming
the appropriate ELCR registers in the PBC.

There is also support for four PCI interrupts, PIRQA_ through PRIQD_.
The PBC has four PIRQ route control registers to allow each of the PCI
interrupt lines to be routed to any of twelve ISA interrupt lines (IRQ0,
IRQ2, IRQ8_, and IRQ13 are reserved for ISA system interrupts). These
active low inputs are used for some of the on-board PCI devices.

Since PCI interrupts are defined as level-sensitive, software must program
the selected IRQ(s) for level-sensitive mode. The assignments of the ISA
interrupts supported by the PBC as shown in the following table:

IRQ9 Level Low PMC INTA# or PMC2 INTB# 2

IRQ10 Level Low PMC INTB# or PMC2 INTC# 2

IRQ11 Level Low PMC INTC# or PMC2 INTD# 2

IRQ12 Level Low PMC INTD# or PMC2 INTA# 2

IRQ13 Level Low PCI-Ethernet 2 (connected to J3)

IRQ14 Level Low ABORT_L

IRQ15 Level Low RTC - Alarm

Table 4-1. MPIC Interrupt Assignments (Continued)

MPIC
IRQ

Edge/Level Polarity Interrupt Source Notes

PCI Arbitration

http://www.motorola.com/computer/literature 4-3

4

Notes 1. Internally generated by the PBC.

2. These interrupt sources must be routed to the appropriate ISA
IRQ using the PBC interrupt routing registers.

Table 4-2. PBC ISA Interrupt Assignments

PRI PSIO
IRQ

Input

Routed to
ISA
IRQ

C
on

tr
ol

le
r Edge/

Level

P
ol

ar
it

y Interrupt Source

N
ot

es

1 IRQ0 INT1 Edge High Timer 1 / Counter 0 1

2 MSK/
IRQ1

IRQ1 Edge High Not Used

3-10 IRQ2 Edge High Cascade Interrupt from
INT2

3 RTCX1/
IRQ8_

IRQ8_ INT2 Edge Low ABORT Switch, RTC

4 IRQ9 Level Low Watch Dog 1/2

5 PIRQA_ IRQ10 Level Low LAN (on front)

6 IRQ11 Level Low Internal USB controller 2

7 MSDT/
IRQ12

IRQ12 Edge High Not Used

8 PIRQC_ IRQ13 LAN (to rear)

9 IRQ14 IRQ14 Edge High Primary IDE interface

10 IRQ15 IRQ15 Level Low PMC1 or PMC2 Interrupt

11 IRQ3 IRQ3 INT1 Level Low COM2 or COM4 Interrupt

12 IRQ4 IRQ4 Level Low COM1 or COM3 Interrupt

13 PIRQB_ IRQ5 Level Low 21554 Secondary Interrupt

14 IRQ6 IRQ6 Edge High Not Used

15 IRQ7 IRQ7 Edge High Not Used

4-4 Computer Group Literature Center Web Site

Hawk Programming Details

4

Exceptions

Sources of Reset

There are five potential reset sources on the MCPN765 series. They are as
follows:

1. Power-On Reset

2. PMC PCI RST#

3. Watchdog Timer Reset via the Hawk Watchdog 2 Timer output

4. Software generated Module Reset

5. RESET_L signal from the debug header

Each source of reset will result in a reset of the processor, Hawk ASIC, and
all other on-board logic. The PMC RESETOUT_L pin will also be
activated by all reset sources except for the PMC PCI RST# input.

Soft Reset

Software can assert the SRESET# pin of the processor by appropriately
programming the P0 bit in the Processor Init Register of the Hawk MPIC.

CPU Reset

The Hawk SRST1_L output is connected to the CPU reset logic. Setting
the P1 bit in the Hawk Processor Init register will result in the local
processor being held in reset. Clearing the P1 bit will release the reset. This
feature can be used by a processor on the host board to disable the local
processor while the host processor programs the Bank A on-board
FLASH.

Exceptions

http://www.motorola.com/computer/literature 4-5

4

Error Notification and Handling

The Hawk ASIC can detect certain hardware errors and can be
programmed to report these errors via the MPIC interrupts or the Machine
Check Interrupt. The following table summarizes how the hardware errors
are handled by the MCPN765 series:

Table 4-3. Error Notification and Handling

Cause Action

Single-bit ECC Store: Write corrected data to memory
Load: Present corrected data to the MPC master
Generate interrupt via MPIC if so enabled

Double-bit ECC Store: Terminate the bus cycle normally without writing to SDRAM
Load: Present uncorrected data to the MPC master
Generate interrupt via MPIC if so enabled
Generate Machine Check Interrupt to the Processor(s) if so enabled

MPC Bus Time Out Store: Discard write data and terminate bus cycle normally
Load: Present undefined data to the MPC master
Generate interrupt via MPIC if so enabled
Generate Machine Check Interrupt to the Processor(s) if so enabled

PCI Target Abort Store: Discard write data and terminate bus cycle normally
Load: Return all 1s and terminate bus cycle normally
Generate interrupt via MPIC if so enabled
Generate Machine Check Interrupt to the Processor(s) if so enabled

PCI Master Abort Store: Discard write data and terminate bus cycle normally
Load: Return all 1s and terminate bus cycle normally
Generate interrupt via MPIC if so enabled
Generate Machine Check Interrupt to the Processor(s) if so enabled

PERR# Detected Generate interrupt via MPIC if so enabled
Generate Machine Check Interrupt to the Processor(s) if so enabled

SERR# Detected Generate interrupt via MPIC if so enabled
Generate Machine Check Interrupt to the Processor(s) if so enabled

4-6 Computer Group Literature Center Web Site

Hawk Programming Details

4

Endian Issues
The MCPN765 series supports both Little and Big-Endian software.
Because the PowerPC processor is inherently big endian, and PCI is
inherently Little-Endian, it is easy to misinterpret the processing scheme.
For that reason, provisions have been made to accommodate the handling
of endian issues within the MCPN765. The following figures show how
the MCPN765 series handles the endian issue in Big-Endian and Little-
Endian modes:

Figure 4-1. Big-Endian Mode

Big-Endian PROGRAM

Hawk

Hawk

DRAM

Big-Endian

Little-Endian

PCI Local Bus

N-way Byte Swap

60X System Bus

Endian Issues

http://www.motorola.com/computer/literature 4-7

4

Figure 4-2. Little-Endian Mode

EA Modification (XOR)

Hawk

Hawk

DRAM

Big-Endian

Little-Endian

PCI Local Bus

EA Modification

60X System Bus

Big Endian

Little Endian
Little-Endian PROGRAM

4-8 Computer Group Literature Center Web Site

Hawk Programming Details

4

Processor/Memory Domain

The MPC750 processor can operate in both Big-Endian and Little-Endian
modes. However, it always treats the external processor/memory bus as
Big-Endian by performing address rearrangement and reordering when
running in Little-Endian mode.

The MPIC registers inside the Hawk, the registers inside the SMC, the
SDRAM, the ROM/FLASH, and the system registers always appear as
Big-Endian.

MPIC’s Involvement

Since PCI is Little-Endian, the MPIC performs byte swapping in both
directions (from PCI to memory and from the processor to PCI). This is in
order to maintain address invariance when it is programmed to operate in
Big-Endian mode with the processor and the memory sub-system.

In Little-Endian mode, it reverse-rearranges the address for PCI-bound
accesses and rearranges the address for memory-bound accesses
(from PCI). In this case, no byte swapping is done.

PCI Domain

The PCI bus is inherently Little-Endian and all devices connected directly
to PCI will operate in Little-Endian mode, regardless of the mode of
operation in the processor’s domain.

A

A-1

ARelated Documentation

Motorola Computer Group Documents
The Motorola publications listed below are referenced in this manual. You
can obtain paper or electronic copies of Motorola Computer Group
publications by:

❏ Contacting your local Motorola sales office

❏ Visiting Motorola Computer Group’s World Wide Web literature
site, http://www.motorola.com/computer/literature

To obtain the most up-to-date product information in PDF or HTML
format, visit http://www.motorola.com/computer/literature.

Table A-1. Motorola Computer Group Documents

Document Title
Motorola

Publication Number

MVME5100 Installation and Use V5100A/IH

PPCBug Firmware Package User’s Manual, Part 1 of 2 PPCBUGA1/UM

PPCBug Firmware Package User’s Manual, Part 2 of 2 PPCBUGA2/UM

PPCBug Diagnostics Manual PPCDIAA/UM

PMCspan PMC Adapter Carrier Module Installation
and Use

PMCSPANA/IH

http://www.motorola.com/computer/literature
http://www.motorola.com/computer/literature
http://www.motorola.com/computer/literature

Manufacturers’ Documents

A-2 Computer Group Literature Center Web Site

A

Manufacturers’ Documents
For additional information, refer to the following table for manufacturers’
data sheets or user’s manuals. For your convenience, a source for the listed
document is also provided.

Note In many cases, the information is preliminary and the
revision levels of the documents are subject to change
without notice.

Table A-2. Manufacturers’ Documents

Document Title
Publication

Number

MPC750 RISC Microprocessor Users Manual
Motorola Literature Distribution Center
Telephone: (800) 441-2447 or (303) 675-2140

MPC750UM/AD

MPC7400 RISC Microprocessor Users Manual
Motorola Literature Distribution Center
Telephone: (800) 441-2447 or (303) 675-2140

MPC7400UM/D

Universe II User Manual
Tundra Semiconductor Corporation
603 March Road, Kanata, ON, Canada K2K 2M5
1-800-267-7231, (613) 592-0714, Fax: (613) 592-1320

N/A

PowerPlus II Vital Product Data Engineering Specification
(Revision 0.1)
Motorola Literature Distribution Center
Telephone: (800) 441-2447 or (303) 675-2140

N/A

Related Documentation

http://www.motorola.com/computer/literature A-3

A

Related Specifications
For additional information, refer to the following table for related
specifications. For your convenience, a source for the listed document is
also provided.

Note In many cases, the information is preliminary and the
revision levels of the documents are subject to change
without notice.

Table A-3. Related Specifications

Document Title and Source
Publication

Number

Peripheral Component Interconnect (PCI) Interface
Specification, Revision 2.1
PCI Special Interest Group
P.O. Box 14070
Portland, Oregon 97214-4070
Marketing/Help Line:
Telephone: (503) 696-6111
Document/Specification Ordering:
Telephone: 1-800-433-5177 or (503) 797-4207
FAX: (503) 234-6762

PCI Local Bus
Specification

Common Mezzanine Card Specification
IEEE Standards Department
445 Hoes Lane, P.O Box 1331

Piscataway, NJ 08855-1331

P1386

Draft 2.0

PCI Mezzanine Card Specification
IEEE Standards Department
445 Hoes Lane, P.O Box 1331

Piscataway, NJ 08855-1331

P1386.1
Draft 2.0

http://www.mcg.mot.com/literature

IN-1

Index

Numerics
32-Bit Counter 3-72

A
AACK, as used with PPC Slave 2-7
access timing (ROM) 3-19, 3-20
address

Address Parity Error Address
Register 3-71

Address Parity Error Log
Register 3-70

data stepping 2-29
decoders PCI to PPC 2-6
decoders PPC to PCI 2-7
limits on PHB map decoding 2-6
mapping PPC 2-6
offsets, as part of map decoders 2-21
parity PPC60x 3-10
pipelining 3-6
transfers 3-9

addressing
mode for PCI Master 2-28
to PCI Slave 2-23

addressing mode, PCI Slave limits 2-24
arbiter

controlled by the XARB register 2-16
Hawk’s internal 2-34
PPC 2-15, 2-16

arbitration
from PCI Master 2-28
latency 2-29
parking 2-37

architectural overview 2-4

B
big to little-endian data swap 2-39
big-endian mode 4-6
bit descriptions 3-38
bit ordering convention 3-1
block diagram

Hawk 3-3
Hawk used with SDRAM 3-2
Hawk with SDRAMs 3-2

bridge
PHB 2-1
PowerPC to PCI Local Bus Bridge 2-1

burst write bandwidth 1-1
Bus Clock Frequency 1-2
bus cycle types, on the PCI bus 2-29
Bus Hog, PPC master device 2-14
bus interface to SMC 3-9

C
cache

coherency restrictions 3-11
coherency SMC 3-11
support 2-25, 2-29

Cache Control Register 1-5
Cache Speed 1-5
CHRP memory 1-4
CLK Frequency Register 3-44
clock frequency 3-44
combining, merging, and collapsing 2-28
command types 2-23

from PCI Master 2-27
PPC slave 2-8

Index

IN-2 Computer Group Literature Center Web Site

I
N
D
E
X

configuration
options on Hawk 3-35
registers 2-19
requirements on Hawk 3-35
type, as used by PHB 2-31

contention
between PCI and PPC 2-44
handling explained (PHB) 2-45

control bit
descriptions 3-38

core frequency 1-5
CSR

accesses to SMC 3-34
architecture of SMC 3-35
base address 3-35
reads and writes 3-35

CWF burst transfers, explained 2-26
cycle types 3-11

D
data, prefetched reads 2-13
data parity 2-17
data throughput,

PPC Slave to PCI Master 2-9
data transfer, PPC Master rates 2-10
decoder priorities 2-21
decoders

address PCI to PPC 2-6
PCI to PPC addressing 2-19
PPC to PCI 2-7

delayed transactions, PCI Slave 2-24
device selection 2-24
Disable Error Correction control bit 3-47
DRAM

connection diagram 3-4
enable bits 3-41
size control bits 3-41

E
ECC

codes 3-86
Control Register 3-45

EEPROM 1-2
EEPROM access 3-76
endian conversion 2-38
End-of-Interrupt Registers 2-126
Error Address Register 3-51
error

correction 3-11
detection 3-11
handling 2-41
logging 3-13
notification and handling 4-5
reporting 3-12

Error Logger Register 3-49
Ethernet controller 1-8
Ethernet interfaces 1-2
exclusive access 2-29
Extended Features

Register 1 1-17
Register 2 1-18

External Register Set 3-34, 3-72
External Source Destination Registers 2-122

F
fast back-to-back transactions 2-29
Feature Reporting Register 2-111
features 2-1
FIFO

from PPC Slave to PCI Master 2-9
structure explained 2-4
with PCI Slave 2-26

Flash (see ROM/Flash) 3-14
Flash Memory 1-2
form factor 1-2
four-beat reads/writes 3-6
functional description

Hawk 2-4
SMC 3-6

FUSE signal 1-13

http://www.motorola.com/computer/literature IN-3

I
N
D
E
X

G
General Control Register
General Purpose Registers 2-94
generating

PCI configuration cycles 2-31
PCI cycles 2-29
PCI interrupt acknowledge cycles 2-34
PCI memory and I/O cycles 2-30
PCI special cycles 2-33

Geographical Address Register 1-17
Global Configuration Register 2-112

H
Hardware Control-Status Register 2-76
Hawk

address parity 3-10
block diagram 2-3
configuration options 3-35
data parity 3-10
ECC Codes 3-86
Error Correction Codes 3-86
error notification and handling 4-5
I2C Byte Write 3-23
I2C Current Address Read 3-27
I2C Page Write 3-29
I2C Random Read 3-25
I2C Sequential Read 3-31
MPIC

control registers 2-22
interrupt assignments 4-1
interrupts 4-1

register map 2-108
programming details 4-1
programming ROM/Flash devices 3-74
software considerations 3-74
System Memory Controller

block diagram 3-3
Hawk ASIC 1-6
Hawk

External Register Bus Summar 1-11
I2C interface and configuration

information 1-6

PCI Host Bridge 1-2
System Memory Controller 1-2
criteria for PHB config. mapping 2-19
I2C bus 3-76
PCI arbiter
priority schemes 2-35

Hardware Control-Status Register 2-76
Header/Type Register 2-99

I
I/O Base Register, MPIC 2-100
I2C

Byte Write 3-23
Current Address Read 3-27
EEPROM 3-76
Page Write 3-29
Random Read 3-25
Sequential Read 3-31

IDSEL Mapping for PCI Devices 1-9
initializing, SDRAM-related

control registers 3-75
Inter-Integrated Circuit 1-6
Internal Clock Frequency 1-2
Interprocessor Interrupt Dispatch

Registers 2-124
Interrupt Acknowledge Registers 2-125
Interrupt Controller 1-2
Interrupt Enable control bits 3-47
interrupts, Hawk MPIC 4-1
introduction

Hawk PHB/MPIC 2-1
PHB/MPIC 2-1
programming details for Hawk 4-1

IPI Vector/Priority Registers 2-115

L
latency, PCI Slave 2-25
little-endian mode 4-7
Lock Resolution, programmable 2-46

http://www.mcg.mot.com/literature

Index

IN-4 Computer Group Literature Center Web Site

I
N
D
E
X

M
Main Memory 1-2
mapping, PPC address 2-6
master initiated termination 2-28
Memory
Base Register 2-100

Controller 1-2
maps 1-4

MODFAIL Bit Register 1-14
MODRST Bit Register 1-15
MPC

arbiter 2-15
bus address space 2-19
slave 2-7
slave response command types 2-8
PCI address decoding 2-6

MPIC
Registers 2-108
involvement 4-8

N
NVRAM 1-2
NVRAM/RTC & Watchdog Timer 1-16

O
on-board PCI devices 1-7
overview 2-1

P
parity 2-29
Parity checking 1-4
PC100 ECC 1-2
PCI

address mapping 2-19
arbiter, Hawk internal version 2-34
arbitration 4-1
Configuration Register map 2-95
contention with PPC 2-44
domain 4-8
FIFO 2-26
FIFO, as used with PCI Slave 2-22
functions of Master 2-26

Interface features 2-1
Master Command Codes 2-27
Master explained 2-4
purpose of interface 2-19
registers 2-95
slave 2-22
Slave disconnect scenarios 2-24
slave response command types 2-23
Slave with PCI Master 2-26
speculative requests 2-46
spread I/O address translation 2-31
to MPC address decoding 2-20
to MPC address translation 2-21
write posting 2-26

PCI / VME Memory Map 1-4
Peripheral Support 1-2
PHB 2-1

address mapping 2-6
configuration type 2-31
contention handling explained 2-45
endian conversion 2-38
error types described 2-41
PPC register map 2-67
Registers described 2-40
retuning write thresholds 2-11
spread I/O addressing 2-30
watchdog timers 2-42

pipelining, removing 2-7
PMC/PCI Expansion Slots 1-8
PowerPlus II architecture 1-1
Power-Up Reset status bit 3-44
PPC

address mapping 2-6
Bus Address Space 2-19
bus arbiter 2-15
Bus connections 2-5
Bus features 2-1
bus interface explained 2-5
bus timer 2-18
contention with PCI 2-44
devices, as little endian 2-39
devices, when big-endian 2-38

http://www.motorola.com/computer/literature IN-5

I
N
D
E
X

Master 2-10
Master, Bug Hog 2-14
Master, doing prefetched reads 2-13
Master, read ahead mode 2-12
parity 2-17
register map 2-67
registers 2-67
slave’s role 2-7
to PCI address translation 2-7
write posting 2-9

PPC Arbiter
debug functions 2-16
parking modes 2-16
prioritization schemes 2-16

PPC Error
Address Register 2-83
Attribute Register - EATTR 2-84
Enable Register 2-78
Status Register 2-81

PPC Slave
Address (0,1 and 2) Registers 2-87
Address (3) Register 2-88
Address Register 2-89
Offset/Attribute Registers 2-90

PPC60x Data Parity 3-10
Prescaler Adjust Register 2-76
priority schemes, described 2-35
Processor Init Register 2-114
processor internal clock frequenc 1-5
Processor

Memory Map 1-4
PLL Configuration 1-5
Type Identification 1-4
Version Register (PVR) 1-4
memory domain 4-8

programming details 1-1, 4-1
programming ROM/Flash devices 3-74
PVR value 1-4

R
RAM

A BASE 3-43, 3-67
B BASE 3-43, 3-67
C BASE 3-43, 3-67
D BASE 3-43, 3-65, 3-66, 3-67

read ahead mode, PPC Master 2-12
Read/Write Checkbits control bit 3-45
refresh/scrub 3-34
register bit descriptions 3-38
register summary 3-36
registers

CLK Frequency 3-44
CONFIG_ADDRESS 2-104
CONFIG_DATA 2-107
End-of-Interrupt 2-126
External Source Destination 2-122
External Source Vector/Priority 2-120
Feature Reporting 2-111
General Purpose 2-94
Global Configuration 2-112
Hardware Control-Status Register 2-76
Header Type 2-99
Interprocessor Interrupt Dispatch 2-124
Interrupt Acknowledge 2-125
IPI Vector/Priority (MPIC) 2-115
MPIC 2-108
MPIC I/O Base Address 2-100
MPIC Memory Base 2-100
PCI

Interrupt Acknowledge 2-86
Slave Address 2-101
Slave Attribute 2-102

PHB-Detected Errors Destination 2-124
PPC

Error Address 2-83
Error Attribute 2-84
Error Enable 2-78
Error Status 2-81
Slave Address 2-89
Slave Offset/Attribute 2-88, 2-90

http://www.mcg.mot.com/literature

Index

IN-6 Computer Group Literature Center Web Site

I
N
D
E
X

RESET and ABORT Switch 1-2
Revision ID Register 2-69
programmable DMA Controller 1-2
ROM

Block A Size Encodings 3-54
Block B Size Encoding 3-57
Flash 3-14
Flash A Base Address control bits 3-53
Flash A size encoding 3-54
Flash A Width control bit 3-53
Flash B Base Address control bits 3-56
Flash B Width control bit 3-57
Flash speeds of SMC 3-9

S
scrub counter 3-51
Scrub Write Enable control bit 3-51
Scrub/Refresh Register 3-51
SDRAM

block organization 3-9
connections (block diagram) 3-4
Operational Method for Sizing 3-83
registers initializing 3-75
sizing 3-76
speed attributes 3-75
speeds 3-7

SDRAM
Base Address/Enable 3-76
Base Register 3-43
Enable and Size Register 3-66
Speed Attributes Register 3-68

Serial Presence Detect (SPD) 3-76
Single Bit Error Counter 3-50
sizing SDRAM 3-76
SMC

32-Bit Counter 3-72
address parity 3-10
cache coherency 3-11
CLK Frequency Register 3-44
CSR Accesses 3-34
cycle types 3-11
data parity 3-10

data transfers 3-9
ECC Control Register 3-45
Error Address Register 3-51
Error Logger Register 3-49
error logging 3-13
External Register Set 3-34
General Control Register 3-39
L2 cache support 3-11
refresh/scrub 3-34
ROM A Base/Size Register 3-53
ROM B Base/Size Register 3-56
ROM Speed Attributes Register 3-58
Scrub/Refresh Register 3-51
SDRAM

Base Address Register 3-43
Enable and Size Register 3-41
Speed Attributes Register 3-68

Vendor/Device Register 3-39
soft reset, MPIC 4-4
software considerations 3-74
Software Readable Header Register 1-16
SPD JEDEC standard definition 1-6
Speculative PCI Request 2-46
Spurious Vector Register 2-116
SRAM base address 3-35
status bit descriptions 3-38
Status Register 1-13
System Bus 1-4
System Controller Mode bit 1-13
System Memory 1-6

T
target initiated termination 2-24
TBEN Bit Register 1-16
Timer

Basecount Registers 2-118
Current Count Registers 2-117
Destination Registers 2-120
Frequency Register 2-116
Vector/Priority Registers 2-119

timing (ROM/Flash access) 3-19

http://www.motorola.com/computer/literature IN-7

I
N
D
E
X

transaction(s)
burst 2-8
compelled 2-7
instance of interrupt 2-8
ordering 2-47
PCI originated/PPC bound described 2-5
posted 2-7

transfer types
generated by PPC Master 2-13
PCI command code dependent 2-13
PPC60x bus 2-13

Tundra Universe Controller 1-2

U
Universe ASIC 1-8
Universe chip problems 4-4
User Configuration Data 1-6

V
Vendor ID/ Device ID Registers 2-96
Vendor Identification Register 2-114
Vital Product Data 1-5, 1-6
VMEbus 1-2
VPD SROM 1-5

W
Watchdog Timer Register 2-43
WDTxCNTL register 2-43
write posting, PHB tuning 2-11
writing to control registers 3-75

http://www.mcg.mot.com/literature

	Title Page (Front)
	Preface (Model Numbers)
	Table of Contents
	List of Figures
	List of Tables

	Chapter1: Product Data and Memory Maps
	Introduction
	What this Guide Provides

	Memory maps
	Processor Memory Map
	PCI / VME Memory Map

	System Bus
	Processors
	Processor Type Identification
	Processor PLL Configuration
	L2 Cache
	L2 Cache SRAM Size
	Cache Speed
	Flash Memory
	System Memory
	Serial Presence Detect (SPD) Definitions

	Hawk ASIC
	Hawk I2C interface and configuration information
	Vital Product Data and Serial Presence Detect Data
	PCI Local Bus
	The Ethernet Controller
	PMC/PCI Expansion Slots
	The Universe ASIC
	PCI Configuration Space
	PCI Arbitration Assignments for Hawk ASIC
	Hawk External Register Bus Address Assignments
	MVME5100 Hawk External Register Bus Summary

	Status Register
	MODFAIL Bit Register
	MODRST Bit Register
	TBEN Bit Register
	NVRAM/RTC & Watchdog Timer
	Software Readable Header Register
	Geographical Address Register (VME board)
	Extended Features Register 1
	Extended Features Register 2

	INTERRUPT HANDLING
	Hawk MPIC

	Chapter 2: Hawk PCI Host Bridge & Multi- Processor Interrupt Controller
	Introduction
	Overview
	Features

	Block Diagram
	Functional Description
	Architectural Overview
	PPC Bus Interface
	PPC Address Mapping
	PPC Slave
	PPC FIFO
	PPC Master
	PPC Arbiter
	PPC Parity
	PPC Bus Timer

	PCI Bus Interface
	PCI Address Mapping
	PCI Slave
	PCI FIFO
	PCI Master
	Generating PCI Cycles
	PCI Arbiter

	Endian Conversion
	When PPC Devices are Big-Endian
	When PPC Devices are Little Endian
	PHB Registers

	Error Handling
	Watchdog Timers
	PCI/PPC Contention Handling
	Transaction Ordering
	PHB Hardware Configuration

	Multi-Processor Interrupt Controller (MPIC)
	MPIC Features:
	Architecture
	External Interrupt Interface
	CSR’s Readability
	Interrupt Source Priority
	Processor’s Current Task Priority
	Nesting of Interrupt Events
	Spurious Vector Generation
	Interprocessor Interrupts (IPI)
	8259 Compatibility
	Hawk Internal Errror Interrupt
	Timers
	Interrupt Delivery Modes
	Block Diagram Description
	Program Visible Registers
	Interrupt Pending Register (IPR)
	Interrupt Selector (IS)
	Interrupt Request Register (IRR)
	In-Service Register (ISR)
	Interrupt Router

	Programming Notes
	External Interrupt Service
	Reset State

	Operation
	Interprocessor Interrupts
	Dynamically Changing I/O Interrupt Configuration
	EOI Register
	Interrupt Acknowledge Register
	8259 Mode
	Current Task Priority Level

	Architectural Notes
	Effects of Interrupt Serialization

	Registers
	PPC Registers
	Vendor ID/Device ID Registers
	Revision ID Register
	General Control-Status/Feature Registers
	PPC Arbiter/PCI Arbiter Control Registers
	Hardware Control-Status/Prescaler Adjust Register
	PPC Error Test/Error Enable Register
	PPC Error Status Register
	PPC Error Address Register
	PPC Error Attribute Register
	PCI Interrupt Acknowledge Register
	PPC Slave Address (0,1 and 2) Registers
	PPC Slave Offset/Attribute (0, 1 and 2) Registers
	PPC Slave Address (3) Register
	PPC Slave Offset/Attribute (3) Registers
	WDTxCNTL Registers
	WDTxSTAT Registers
	General Purpose Registers

	PCI Registers
	Vendor ID/ Device ID Registers
	PCI Command/ Status Registers
	Revision ID/ Class Code Registers
	Header Type Register
	MPIC I/O Base Address Register
	MPIC Memory Base Address Register
	PCI Slave Address (0,1,2, and 3) Registers
	PCI Slave Attribute/ Offset (0,1,2 and 3) Registers
	CONFIG_ADDRESS Register
	CONFIG_DATA Register

	MPIC Registers
	MPIC Registers
	Feature Reporting Register
	Global Configuration Register
	Vendor Identification Register
	Processor Init Register
	IPI Vector/Priority Registers
	Spurious Vector Register
	Timer Frequency Register
	Timer Current Count Registers
	Timer Basecount Registers
	Timer Vector/Priority Registers
	Timer Destination Registers
	External Source Vector/Priority Registers
	External Source Destination Registers
	Hawk Internal Error Interrupt Vector/Priority Register
	Hawk Internal Error Interrupt Destination Register
	Interprocessor Interrupt Dispatch Registers
	Current Task Priority Registers
	Interrupt Acknowledge Registers
	End-of-Interrupt Registers

	Chapter 3: System Memory Controller (SMC)
	Introduction
	Overview
	Bit Ordering Convention
	Features

	Block Diagrams
	Functional Description
	SDRAM Accesses
	Four-beat Reads/Writes
	Single-beat Reads/Writes
	Address Pipelining
	Page Holding
	SDRAM Speeds

	SDRAM Organization
	PPC60x Bus Interface
	Responding to Address Transfers
	Completing Data Transfers
	PPC60x Data Parity
	PPC60x Address Parity
	Cache Coherency
	Cache Coherency Restrictions
	L2 Cache Support

	SDRAM ECC
	Cycle Types
	Error Reporting
	Error Logging

	ROM/Flash Interface
	ROM/Flash Speeds

	I2C Interface
	I2C Byte Write
	I2C Random Read
	I2C Current Address Read
	I2C Page Write
	I2C Sequential Read

	Refresh/Scrub
	CSR Accesses
	External Register Set
	Chip Configuration

	Programming Model
	CSR Architecture
	Register Summary
	Detailed Register Bit Descriptions
	Vendor/Device Register
	Revision ID/General Control Register
	SDRAM Enable and Size Register (Blocks A, B, C, D)
	SDRAM Base Address Register (Blocks A/B/C/D)
	CLK Frequency Register
	ECC Control Register
	Error Logger Register
	Error_Address Register
	Scrub/Refresh Register
	Scrub Address Register
	ROM A Base/Size Register
	ROM B Base/Size Register
	ROM Speed Attributes Registers
	Data Parity Error Log Register
	Data Parity Error Address Register
	Data Parity Error Upper Data Register
	Data Parity Error Lower Data Register
	I2C Clock Prescaler Register
	I2C Control Register
	I2C Status Register
	I2C Transmitter Data Register
	I2C Receiver Data Register
	SDRAM Enable and Size Register (Blocks E,F,G,H)
	SDRAM Base Address Register (Blocks E/F/G/H)
	SDRAM Speed Attributes Register
	Address Parity Error Log Register
	Address Parity Error Address Register
	32-Bit Counter
	External Register Set
	tben Register

	Software Considerations
	Programming ROM/Flash Devices
	Writing to the Control Registers
	Initializing SDRAM Related Control Registers
	SDRAM Speed Attributes
	SDRAM Size
	I2C EEPROMs
	SDRAM Base Address and Enable
	SDRAM Control Registers Initialization Example
	Optional Method for Sizing SDRAM

	ECC Codes

	Chapter 4: Hawk Programming Details
	Introduction
	PCI Arbitration
	Hawk MPIC External Interrupts
	8259 Interrupts

	Exceptions
	Sources of Reset
	Soft Reset
	CPU Reset
	Error Notification and Handling

	Endian Issues
	Processor/Memory Domain
	MPIC’s Involvement
	PCI Domain

	Appendix A: Related Documentation
	Motorola Computer Group Documents
	Manufacturers’ Documents
	Related Specifications

	Index

